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Every year in the March issue, we publish a report on the 
operation of the Journal. This report provides information on 
matters like our efforts to make our papers more accessible to 
fluids engineers, reduce reviewing time, as well as our special 
activities, like the publication of special articles, the establish
ment of the JFE Data Bank, publishing in color and others. 
We also include standard information on the four issues of 
the previous volume, namely, the list of reviewers and an index 
of papers listed under certain technical categories. 

The Editorial Board of the Journal has had many discussions 
over the past years on what this Journal could do to improve 
the process of technology transfer. For the time being, the 
Editor urges authors strongly and in specific terms to include 
in their conclusions information that could be appreciated by 
practicing fluids engineers. This is an issue of current concern 
(see also the series of editorials on U.S. Competitiveness that 
appeared in our Technical Forum) and we are eager to par
ticipate more actively in the process of technology transfer 
after the Division defines the Journal's role. 

An informal investigation indicated that only a few papers 
presented at the Division meetings are submitted to the Journal. 
To some extent, this may be due to the impression shared by 
some authors that papers included in symposium proceedings 
cannot be submitted for Journal publication. In fact, ASME 
does not consider proceedings papers archival and such papers 
are accepted by all ASME transactions for publication. We 
do not actively solicit conference papers but it appears that 
we could serve our readership better if the most significant 
papers from our meetings were eventually published in the 
Journal. 

In the past year, we experienced again an increase in the 
number of submitted papers. This trend started about five 
years ago and the increase since then has been monotonic. The 
number of papers received has nearly tripled in this period. 
For a few years now, we were able to secure more pages for 
the Journal for a total increase of about 60 percent. Unfor
tunately, in the past two years, no further increase was possible. 
Due to the global recession, many libraries have discontinued 
their subscription to a large number of technical journals. The 
JFE does cover its expenses of publication but the ASME 
Publications Committee decided to follow a uniform, con
servative approach and did not approve any increase in allotted 
pages for any of the ASME Transactions. This situation has 
increased our backlog and as a result lengthened the accept
ance-to-publication time. 

In the past year we were able to decrease the time between 
submission and the editorial decision on publication to an 
average of ten months. This figure may not seem encouraging 
but one should bear in mind that it includes the time required 
for revisions, which unfortunately for many authors is six or 
more months. More disturbing to individual authors are delays 
on the first return of reviews and editorial advice. These are 
usually due to individuals who accept the responsibility to 
review a paper, but fail to respond, even after many telephone 
or e-mail prompts. Authors should understand that if two of 
the three reviewers do not respond after a few months, the 
Editorial Board is at an impasse. We usually turn to new 
reviewers to whom we explain the situation but we cannot 

expect from them a response sooner than the traditional two 
to three weeks usually allowed for a review. 

In the past year we established a data bank for data that 
accompany selected JFE papers. Today, modern equipment 
can generate massive numbers of experimental data. Since only 
a small set of such data can be presented in the few figures of 
a paper, it was decided to provide to the Journal readership 
selected files of data electronically. Data are reviewed and 
archived and once deposited to the JFE Data Bank, they are 
considered an integral part of a JFE paper and should be 
appropriately referenced if employed or manipulated by other 
authors. Papers accompanied by data are identified by a sub
title. Readers can log on to the JFE Data Bank, examine and 
if they desire, download files. Directions appear in the last few 
pages of each issue. 

The JFE Data Bank initiative appears to have been received 
enthusiastically by the JFE readers. In the month of April 1993 
alone, immediately after the appearance of the March issue, 
over 1,500 individuals logged on to the JFE Data Bank and 
about half of them downloaded data. The March 1993 issue 
contained two review articles, which were accompanied by data 
and should have been very useful to the readers. This rate has 
been reduced since but at any month, a few hundred readers 
log on to the JFE Data Bank. 

Our readers must have noticed that the December issue ap
peared in color. This is an option now available. Unfortu
nately, there is a charge to the authors, but thanks to the efforts 
of our publisher, Mr. James Sheridan and our copy editor, 
Ms. Cornelia Monahan, this was reduced to a fraction of what 
other technical journals charge for color. Depending on how 
many papers accompanied by color figures can be grouped in 
one issue, a color page could cost between $300 and $800 to 
the authors. 

Finally we should acknowledge the valuable contribution of 
seven of our associate editors whose tenure has expired. They 
are (i) Dr. Nicholas A. Cumpsty in the area of fluid application 
and systems, (ii) Dr. Thomas T. Huang, in the area of fluid 
measurements, (iii) Dr. Ramesh K. Agarwal, (iv) Mr. Dennis 
M. Bushnell, (v) Dr. Ho, Chih-Ming, in the area of fluid 
mechanics, (vi) Dr. Andrea Prosperetti, in the area of multi
phase flow, and (vii) Dr. Saad A. Ragab, technical editor's 
office. We sincerely appreciate their hard work. We should 
also acknowledge the contributions of our reviewers. The names 
of the individuals who helped us out this year are listed in the 
last pages of this issue. 

Individuals have been nominated to serve three-year terms 
as associate editors. These and the areas they will be working 
on are: Professor Hiroyuki Hashimoto (Tohoku University, 

. Japan), Professor Wing-Fai Ng (Virginia Polytechnic Institute 
and State University)—fluid application and systems; Dr. Jong 
H. Kim (Electric Power Research Institute, Palo Alto, CA)— 
multiphase flow; Professor David E. Stock (Washington State 
University)—fluid measurement; and Professor S. Pratap 
Vanka (University of Illinois)—computational fluid dynamics. 
Professor Joseph A. C. Humphrey was reappointed for a sec
ond three year term and will work in the area of fluid me
chanics. 

The Technical Editor 
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Questions in Fluid Mechanics: 

Reynolds Number Effects in Wall-Bounded Flows 

by Mohamed Gad-el-Hak1 and Promode R. Bandyopadhyay2 

For wall-bounded flows, what are the Reynolds number 
effects on the mean and statistical turbulence quantities and 
on the organized motion? 

The Reynolds numbers encountered in many practical sit
uations are orders of magnitude higher than those studied 
computationally or experimentally. For this reason, our knowl
edge of high-Reynolds number flows is limited and a complete 
understanding is yet to emerge. Free shear flows are nearly 
inviscid at sufficiently high Reynolds number, and by impli
cation are Reynolds number-independent. However, the sit
uation is more complicated in wall-bounded flows, where no 
matter how large the Reynolds number is, there is always a 
finite region near the surface where viscosity effects are im
portant. The key question is then what are the Reynolds num
ber effects in wall-bounded flows on the mean and statistical 
turbulence quantities and on the organized turbulent motions? 

The Direct Numerical Simulation (DNS) of turbulent bound
ary layers have so far been carried out up to a Re# of 1410 
(Spalart, 1986). Since the computational resource required var
ies as the cube of the Reynolds number, it would not be possible 
to simulate very high-Reynolds number turbulent shear flows 
any time soon (Karniadakis and Orszag, 1993). This has created 
a resurgence of interest in turbulence modeling particularly for 
high-Reynolds number flows. Understanding of turbulence and 
modeling will continue to play vital roles in the computation 
of high-Reynolds number practical flows using the Reynolds-
averaged Navier-Stokes equations. Apart from turbulence 
modeling, the knowledge of Reynolds number effects is useful 
to flow control, a field of obvious practical utility. For eco
nomic reasons, typical control devices are initially developed 
and tested at rather low speeds. Extrapolation to field con
ditions is not always straightforward though, and it often fails. 

One of the earliest studies of the Reynolds number effects 
in turbulent boundary layers was due to Coles (1962). When 
measurements of mean velocity profiles were expressed in inner 
layer form based on directly measured local skin-friction val
ues, a logarithmic region was found to exist even at a Ree of 
50 X 103. The wall-layer variables appear to describe the mean 
flow in the inner layer universally in flat plates, pipes and 
channels at all Reynolds numbers. On the other hand, in a 
boundary layer, the behavior of the outer layer, when expressed 
in terms of the wall layer variables by the strength of the wake 
component AU+, which is the maximum deviation of the mean 
velocity profile from the log law, appeared to reach an asymp
totic value for Re„>6x 103. Above this limit, the inner and 

'University of Notre Dame, Notre Dame, IN 46556-5637. 
2Naval Undersea Warfare Center, Newport, Rhode Island, 02841-5047. 

outer layer mean flows are then expected to reach an asymptotic 
state which the turbulence quantities are also hypothesized to 
follow. This is, however, not the case since the wake component 
starts decreasing, albeit slowly, at about Ree> 15x10 . This 
raises the question, does the mean flow ever achieve true self-
preservation? There is some new evidence that in boundary 
layers even the mean flows normalized with inner variables 
show Reynolds number dependence all the way down to the 
edge of the viscons sublayer (George et al., 1992). 

The situation is murkier for higher-order turbulence statis
tics. Measurements in pipes (Morrison et al., 1971), channels 
(Wei and Willmarth, 1989) and boundary layers (Andreopou-
los et al., 1984; Erm et al., 1985) show that the turbulence 
quantities do not scale with wall-layer variables even in the 
inner layer. Therefore, the question arises, can we apply mean-
flow scales to turbulence? 

Furthermore, the outer-layer-device drag reduction experi
ments of Anders (1990) show that for Ree>6x 103, the max
imum skin-friction reduction and the recovery length (the latter 
with some exception) do not remain constant but decrease with 
increasing Reynolds number. The loss of performance at higher 
Reynolds numbers is puzzling and Anders attributed this to a 
significant change in the turbulence structure. In this back
ground, a relevant question is: does the turbulence structure 
change above this Reynolds number limit? 

Consider another puzzling high-Reynolds-number behavior. 
Clauser (1954) had experimentally shown that in a turbulent 
boundary layer at a given low Reynolds number, disturbances 
survive much longer in the outer layer (y/5 > 0.2) than in the 
inner layer. He demonstrated this by placing a circular rod in 
the outer and inner layers. In viscous drag reduction techniques 
where a device drag penalty is involved, as with the use of an 
outer-layer-device, a recovery length of O[1005] is desirable to 
achieve a net gain. To date, such recovery lengths have been 
achieved only at low Reynolds numbers as mentioned earlier. 
One normally expects the recovery length to be far less if the 
disturbances are applied near the wall, and the length to reduce 
even more as Re# is increased. However, published data (Kle-
banoff and Diehl, 1952; Bandyopadhyay, 1991) show that, in 
fact, at higher Reynolds numbers, an opposite trend sometimes 
takes place. This unexpected result raises the question, what 
is the Reynolds number effect on post-transition memory? 

More details could be found in a forthcoming article by 
Gad-el-Hak and Bandyopadhyay (1994). 
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A Report on the Panel Events at the '93 WAM in New 
Orleans and Definition of a Course of Action. 

Fluids engineers were not the only ones at the '93 WAM to 
identify technology transfer as a major bottleneck stifling the 
working effectiveness of their peers. It was also identified as 
such by at least three other working groups who had scheduled 
discussions on this very same topic. As such, our panel echoed 
the general sentiment throughout the engineering community 
that there are inherent road blocks out there which frustrate 
a fuller utilization of our technologies to hone a more highly 
competitive edge into our industrial products. 

Several perceived factors responsible for this state of affairs 
were introduced in this column in earlier issues of the Journal 
of Fluids Engineering. The authors/panelists conceived of a 
number of solutions having the potential of lubricating the 
critical transfers from the work places where the technologies 
are being generated to the work places where they are being 
used. At this '93 panel these solutions were to be critically 
examined by a core of responders selected for their maturity 
and experience and by an audience who would speak for the 
broad membership. Although time was short and the '93 at
tendance was less impressive than at the 1991 panel, the dis
cussions were exceptionally lively and they reflected divergences 
of opinions, particularly between those at the far ends of the 
transfer chain. 

The three central themes introduced by the panelists were 
as follows. 

1. An effective person-to-person relationship between those 
engaged in exchanging technologies. This can typically be 
initiated by a member of academia working to establish 
a productive and mutually beneficial rapport with a coun
terpart in industry, by helping him solve his more difficult 
problems. Compensations for these services take the form 
of grant support by his company to the university where 
they are used to support research programs, which may 
or may not be related to the particular consulting problem 
at hand. Through such interactions, industry receives in
fusions from technical specialists from universities and 
the university benefits from exposure to real life problems 
and from industrially financed support to supplement its 
dwindling government sources. 

2. A scheme for the ASME to take an active role in pro-

1 President, Fluids Engineering Associates, 14 Cleveland Road West, RD 2, 
Princeton, NJ 08540. 
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moting such relationships on a national scale. By so doing, 
the ASME is greatly extending its main charter respon
sibility, i.e., that of disseminating technology. It can do 
this by assuming now the role of a broker or matchmaker 
between those who have it and those who need it. In this 
capacity, the ASME would develop data banks of the 
technologies that are available and match them against 
corresponding data banks of technologies that are ad
vertised as being wanted. Under ASME guidance, con
sortia and consulting relationships are brought into being 
at regional as well as at national levels. Monetary com
pensations are paid by those who benefit from the transfer 
for the time and effort expended, supplemented perhaps 
by government matching funds. All these would be used 
for research or for further technology developments. Once 
such a consortium is established, the ASME withdraws, 
allowing the new partnership to self-expand. 

3. From the realization that much of the world technologies 
can now be found offshore as well as in the US and that 
these sources are essentially untapped, it can be concluded 
that if US industry availed itself of them, its competi
tiveness would be greatly increased at little cost to itself. 
Thus the problem is how to best mine these sources to 
bring them as quickly as possible onto the computer 
screens of those in need of the technologies. Clearly this 
could best be done with federal participation for the 
searches, translations and the conversions into digestible 
forms. 

The great majority of responders on the panel echoed the 
need for vastly increased transfer means. It was recognized 
that existing agencies, such as the various Institutes for Air 
Conditioning and Refrigeration, Gas Research, Electric Power 
Research, Industrial Research, the various government labo
ratories commercialization efforts, the various university in
dustrial liaison programs, the on and off-campus sponsored 
conferences, the industrial technical councils and extension 
centers, the many new Technology Centers, while they perform 
admirably, do not come close to meeting all the needs that 
have been publicly admitted or that are known to be latent in 
occluded states. Many of the above-mentioned associations 
serve their affiliated industries only and do not perform the 
broad function of meeting the random needs as they arise. 

There were voices of opposition, mainly from the academic 
sector. To help industry solve its problems is seen as a dis
traction at the more research oriented institutions, diluting the 
established scientific activities. The notion was also expressed 

U.S. Technological Competitiveness: 
A Fluids Engineers' Viewpoint 
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of grant support by his company to the university where 
they are used to support research programs, which may 
or may not be related to the particular consulting problem 
at hand. Through such interactions, industry receives in
fusions from technical specialists from universities and 
the university benefits from exposure to real life problems 
and from industrially financed support to supplement its 
dwindling government sources. 

2. A scheme for the ASME to take an active role in pro-
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moting such relationships on a national scale. By so doing, 
the ASME is greatly extending its main charter respon
sibility, i.e., that of disseminating technology. It can do 
this by assuming now the role of a broker or matchmaker 
between those who have it and those who need it. In this 
capacity, the ASME would develop data banks of the 
technologies that are available and match them against 
corresponding data banks of technologies that are ad
vertised as being wanted. Under ASME guidance, con
sortia and consulting relationships are brought into being 
at regional as well as at national levels. Monetary com
pensations are paid by those who benefit from the transfer 
for the time and effort expended, supplemented perhaps 
by government matching funds. All these would be used 
for research or for further technology developments. Once 
such a consortium is established, the ASME withdraws, 
allowing the new partnership to self-expand. 

3. From the realization that much of the world technologies 
can now be found offshore as well as in the US and that 
these sources are essentially untapped, it can be concluded 
that if US industry availed itself of them, its competi
tiveness would be greatly increased at little cost to itself. 
Thus the problem is how to best mine these sources to 
bring them as quickly as possible onto the computer 
screens of those in need of the technologies. Clearly this 
could best be done with federal participation for the 
searches, translations and the conversions into digestible 
forms. 

The great majority of responders on the panel echoed the 
need for vastly increased transfer means. It was recognized 
that existing agencies, such as the various Institutes for Air 
Conditioning and Refrigeration, Gas Research, Electric Power 
Research, Industrial Research, the various government labo
ratories commercialization efforts, the various university in
dustrial liaison programs, the on and off-campus sponsored 
conferences, the industrial technical councils and extension 
centers, the many new Technology Centers, while they perform 
admirably, do not come close to meeting all the needs that 
have been publicly admitted or that are known to be latent in 
occluded states. Many of the above-mentioned associations 
serve their affiliated industries only and do not perform the 
broad function of meeting the random needs as they arise. 

There were voices of opposition, mainly from the academic 
sector. To help industry solve its problems is seen as a dis
traction at the more research oriented institutions, diluting the 
established scientific activities. The notion was also expressed 
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There were voices of opposition, mainly from the academic 
sector. To help industry solve its problems is seen as a dis
traction at the more research oriented institutions, diluting the 
established scientific activities. The notion was also expressed 
that because there are already so many agencies dedicated to 
that purpose, academia must remain one that is free to carry 
out research for its own sake in a setting that is fully inde
pendent, free of confidentiality entanglements and strong in 
its conviction that its research work remains at the core as a 
driving force for progress. Industry's need for help was seen 
as a problem of industry, endemic to its culture, to its preoc
cupation with secretiveness and to its inability or unwillingness 
to think long term and adopt advanced technologies. 

These sentiments express the magnitude of the gap between 
these cultures, each claiming a modus vivendi which is unique 
to themselves and which cannot be changed. They are at the 
root cause for the state of gridlock referred to in earlier col
umns, inhibiting a more effective flow of information between 
the cultures. The ASME has in the past assumed a passive role 
in bridging this gap. It has provided a forum for publicizing 
the technologies, supplied current interest and archival repo
sitories to store them, library services to disseminate them, 
computerized searching means to retrieve them. The Federal 
Government has done likewise through its many laboratories 
and its technological indices. These are passive roles, however, 
which assume that information once it is made available will 
be aggressively dug out by those who need it. These assump

tions now appear to be unrealistic. A more active role is needed 
on the part of the ASME to help the process along, opening 
doors that are closed, easing the assimilation problems by 
multiplying the opportunities for mutually beneficial inter
actions. 

Such a new role assumed by the ASME would meet all three 
basic themes expressed earlier in this column. Only basic or 
emerging technologies of the type now available from library 
shelves would be involved with minimum vulnerability to issues 
of confidentiality.-Offshore, as well as onshore sources, would 
be tapped equally. The key elements rest with the willingness 
on the part of the technology producers to get themselves 
involved and with the willingness on the part of the users to 
dedicate time and skills to master the technologies and put 
them into daily use. 

The challenge of such an effort is not to be underestimated. 
It cuts into many existing "sacred cows" and safe refuges. It 
forces the various sectors of our technological world to work 
together in ways that have mostly been forgotten. As a follow 
up to the ideas advanced by the authors and panelists, a model 
for action will be defined and formally submitted to the lead
ership of the Fluids Engineering Division, as an opportunity 
to lead an endeavor that hopefully would then catch on across 
the breadth of the ASME. Some other engineering societies 
such as the AIChE already have similar action programs in 
effect. Their experience will be invaluable in developing our 
own. 
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Perspective: Numerical 
Simulations of Wakes and Blade-
Vortex Interaction 
A method for simulating incompressible flows past airfoils and their wakes is de
scribed. Vorticity panels are used to represent the body, and vortex blobs (vortex 
points with their singularities removed) are used to represent the wake. The procedure 
can be applied to the simulation of completely attached flow past an oscillating 
airfoil. The rate at which vorticity is shed from the trailing edge of the airfoil into 
the wake is determined by simultaneously requiring the pressure along the upper 
and lower surface streamlines to approach the same value at the trailing edge and 
the circulation around both the airfoil and its wake to remain constant. The motion 
of the airfoil is discretized, and a vortex is shed from the trailing edge at each time 
step. The vortices are convected at the local velocity of fluid particles, a procedure 
that renders the pressure continuous in an inviscid fluid. When the vortices in the 
wake begin to separate they are split into more vortices, and when they begin to 
collect they are combined. The numerical simulation reveals that the wake, which 
is originally smooth, eventually coils, or wraps, around itself, primarily under the 
influence of the velocity it induces on itself, and forms regions of relatively con
centrated vorticity. Although discrete vortices are used to represent the wake, the 
spatial density of the vortices is so high that the computed velocity profiles across 
a typical region of concentrated vorticity are quite smooth. Although the computed 
wake evolves in an entirely inviscid model of the flow field, these profiles appear to 
have a viscous core. The computed spacing between the regions of concentrated 
vorticity in the wake and the circulations around them are in good agreement with 
the experimental results. As an application, a simulation of the interaction between 
vorticity in the oncoming stream and a stationary airfoil is also discussed. 

1 Introduction 
The numerical simulation of unsteady vorticity-dominated 

flow is a long-standing interest of many researchers. In this 
paper we consider one small aspect of the total problem: the 
numerical simulation of the wake generated by a moving air
foil. The recent extensive reviews and discussions of vortex 
methods and modelling of vorticity-dominated flowfields by 
Leonard (1980), McCroskey (1982), Aref (1983), Aref and 
Kambe (1988), Spalart (1988), and Sarpkaya (1989) provide 
the background for the present discussion. No attempt is made 
to paraphrase or elaborate on them. The present discussion is 
focused on some recent developments and comparisons be
tween numerical and experimental results; it is part review, 
part perspective, and part presentation of new results. A similar 
discussion of an analytical approach with some historical per
spectives can be found in the recent article by McCune and 
Tavares (1993). 

'Present address: Assistant Professor, Department of Mechanical and Pro
duction Engineering, National University of Singapore, Singapore. 
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The panel method described here employs a continuous dis
tribution of vorticity on the surface of the airfoil. The advan
tage is that continuous surface velocity, pressure, etc. are 
obtained directly from the solution. Versions of the method 
have been used to model steady flows by Raj and Gray (1978) 
and unsteady flows by Kim and Mook (1986). 

In unsteady attached flows past airfoils a thin layer of con
centrated vorticity (simulated as a vortex sheet) forms at the 
trailing edge. It rolls up and stretches, forming regions of 
concentrated vorticity that spread and distort as they convert 
downstream. McCroskey (1982) gave a review of the work on 
the unsteady aerodynamics of oscillating airfoils, such as those 
pitching and/or plunging. In certain ranges of the amplitude 
and frequency of the oscillation, the flow on the surface of 
the airfoil stays attached. Some experiments have been con
ducted, focusing on the flow near the trailing edge. Ohashi 
and Ishikawa (1972) and Ho and Chen (1980, 1981) experi
mentally studied the Kutta condition using a plunging airfoil. 
Poling and Telionis (1986) were able to explore the neighbor
hood of the trailing edge of a pitching airfoil in greater detail 
by using an ensemble-averaging scheme. Park et al. (1988) also 
conducted an experiment on the near wake of a pitching airfoil 
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and detected the trailing-edge stall and found that its occur
rence is related to the reduced frequency of the pitching. Liu 
et al. (1990) studied the unsteady flow near the trailing edge 
of a fixed-airfoil by disturbing the oncoming stream. 

The far wake has also been investigated. In an experimental 
and numerical study, Mathioulakis et al. (1985) concluded that 
the flowfield is controlled almost entirely by the inviscid self-
interaction of vorticity. This conclusion is further substantiated 
by the experimental and numerical work of Wilder et al. (1990). 
Mook et al. (1987, 1989) numerically simulated the wake of 
an oscillating airfoil by using discrete vortices and obtained a 
large-scale structure that is very similar to the one observed 
by Bratt (1950) through flow visualization. Koochesfahani's 
experiment (1989) showed that the wake structure can be con
trolled by the frequency, amplitude, and the shape of the 
oscillation waveform. Booth (1987) measured the velocity be
hind a pitching airfoil in a wind tunnel and numerically in
tegrated the measurements to obtain the circulations around 
the regions of concentrated vorticity. The numerical results of 
Mook and Dong (1990) obtained by using discrete vortices 
agree very well with Booth's experimental results. 

Wakes are often approximated by a system of discrete point 
vortices (called vortex points here) or vortex blobs. The use 
of vortex points to simulate continuous vortex sheets appar
ently was first proposed by Rosenhead (1931). The flowfield 
induced by a vortex point is singular so that some special 
treatment, such as setting a cutoff criterion, is necessary. The 
vortex-blob method also deletes the singularity (Spalart, 1988); 
it is used in simulations presented here and discussed below. 

In order to model closely coupled aerodynamic interference, 
especially the situation in which one airfoil is near or in the 
wake of another, an accurate simulation of the wake is needed. 
Mook et al. (1987) developed an innovation that captures some 
details of the wake by adding more discrete vortices to the 
wake and then redistributing the circulations among them. The 
innovation is described below and used in most of the simu
lations presented here. The present numerical results are in 
good agreement with the experiments. 

As an application of the numerically simulated wake, blade-
vortex interaction (BVI), which happens in the flowfields of 
helicopter blades and is a primary source of unsteady loads 
and noise, is briefly discussed in this review. When a rotor 
advances, the blades encounter the vortex filaments generated 
by the preceding blades. Generally, BVI is a complicated three-
dimensional unsteady phenomenon, but it is sometimes con
sidered as the combination of the following two limit cases 
(Srinivasan, 1985): one in which the vortex filament is parallel 
to the span of the blade, and one in which the vortex filament 
is perpendicular to the span. The former is often idealized as 
a two-dimensional problem and, as such, it is discussed here. 

The two-dimensional BVI has been experimentally investi
gated by Poling et al. (1988), Booth and Yu (1986), Booth 
(1986, 1987), and Straus et al. (1990). In all these experiments, 
which were conducted in both wind and water tunnels, similar 
apparati were used: a stationary airfoil was placed in or near 
the wake generated by a pitching airfoil upstream. The flow-
field and loads on the stationary airfoil were measured. 

In the early numerical simulations of BVI, a single vortex 
point was released far upstream and allowed to pass through 
the neighborhood of an airfoil. This situation has been treated 
by employing the Euler equations for compressible flows and 
the Navier-Stokes equations for incompressible flows (Srini
vasan, 1985; Srinivasan et al., 1984, 1986; Damodaran and 
Caughey, 1988; Wu et al., 1985; Hsu and Wu, 1986). Con-
formal mapping and vortex methods have also been used to 
simulate BVI for incompressible inviscid flows (Huang and 
Chow, 1982; Chow and Huang, 1983; Wu et al., 1985; Hsu 
and Wu, 1986, 1988; Poling et al., 1987, 1988; Dong, 1987). 
The major shortcoming of this single-vortex model is that in 
an actual situation vorticity is not confined to a point; instead 

it is distributed over a finite area. Consequently, the single-
vortex model appears to be reasonable only when the dimension 
of the vorticity-bearing area is small compared to its distance 
from the airfoil. Improved models have been developed by 
using more than just one vortex to simulate the finite vorticity-
bearing area (Panaras, 1987; Lee and Smith, 1987; Poling et 
al., 1988; Renzoni and Mayle, 1991). 

In the present discussion of BVI, first the interaction of a 
vortex point with an airfoil is investigated. The inviscid sim
ulation closely matches some solutions of the Navier-Stokes 
equations for attached turbulent flow and of the Euler equa
tions for inviscid transonic flow. Then a simulation of the 
experiment of Booth (1987) is discussed, in which a stationary 
airfoil is placed in the wake of a pitching airfoil. A numerical 
solution is described that accounts for the aerodynamic inter
ference between the two airfoils and for the interactions among 
all wakes and all blades. The discrete vortices simulating the 
wake of the pitching airfoil are neither uniform nor arranged 
in a simple pattern, but arranged in a manner consistent with 
the wake of the pitching airfoil. Renzoni and Mayle (1991) 
also attempted to do this, but they did not split the vortex 
points. The predicted aerodynamic loads on the stationary 
airfoil are similar to other numerical solutions, but differ from 
Booth's measurement (1987). An explanation for the difference 
is given. In the authors' paper on BVI (Dong and Mook, 1991), 
the numerical simulation of the experiments by Straus et al. 
(1990), which are similar to Booth's, is found to be in good 
agreement with the observations. 

2 Description of the Numerical Models of the Flowfield 
There are several good models for attached unsteady flows 

past airfoils. Here the concentration is on a recent development 
based on panels of continuously varying vorticity. One ap
pealing characteristic of this approach is that the unknown is 
a primitive variable, the velocity of the fluid particles next to 
the surface. With no post-processing, the solution provides a 
continuous estimate of the velocity next to the surface of the 
airfoil. With very little post-processing, the solution also pro
vides a continuous pressure distribution over the surface. 

Any model of unsteady flow past an airfoil must predict 
both the rate at which vorticity is shed from the trailing edge 
into the wake and the way in which the shed vorticity is trans
ported downstream. These features of the model are described 
in this section. First the basic concepts and the governing 
equations are discussed. Then some simplifications, a panel 
method coupled with vortex dynamics, and the Kutta condition 
at the trailing edge are introduced. The flowfield is considered 
two-dimensional in all that follows. Mracek and Mook (1988) 
developed a three-dimensional version of the present panel 
method. 

2.1 Basic Concepts. The continuity equation for incom
pressible flows is 

DivV = 0 (1) 
where V is the velocity vector, and vorticity is defined by 

fi = CurlV (2) 
Equations (1) and (2) can be inverted to give V as a function 

of ft (see, e.g., the general discussion of Sommerfeld, 1964, 
Section IV. 20, more recent discussions by Wu and Thompson, 
1973, and Wu and Sankar, 1980) 

v^r A 1 [ Afro. Q x ( r - r n ) .,0,,. •, , v m 

V(r, t) = — \ j 7} dS(r0) + Voo (3) 
Z7T J j I r — TQ I 

where S is the entire region of interest, r0 is the position of 
the area element dS, r is the position where the velocity is being 
evaluated, / is the time, V„ is the uniform velocity of the 
freestream, and x denotes a cross product of vectors. 
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Six important characteristics of the velocity field V given by 
Eqs. (l)-(3) are worth mentioning: 

1. The disturbance velocity [the first term of the right-
hand side of Eq. (3)] is a version of the Biot-Savart law. 

2. The region S includes the flowfield as well as the interiors 
of the objects in the flowfield, and the vorticity in those in
teriors is twice the angular velocity of these objects. (More 
details are given in Section 2.3.) 

3. The vorticity, 0, may be zero in large subregions of S 
and the velocity, V, is irrotational in these regions. 

4. Vorticity anywhere in S creates velocity everywhere in 
S. 

5. The disturbance velocity decays as the reciprocal of the 
distance from the vorticity-bearing subregions. 

6. Equation (3) is a purely kinematic relationship; in de
riving it, one does not need to make any assumptions regarding 
the velocity field other than V is continuous, and DivV = 0. 
Consequently, Eq. (3) is valid for "viscous" as well as "in-
viscid" models of flows. 

In the model of attached unsteady flow past an airfoil, one 
postulates a priori that all the vorticity is in the following three 
subregions: a thin layer of fluid adjoining the surface of the 
airfoil, the wake (a free shear layer emanating from the trailing 
edge), and the interior of the airfoil itself. Thus, instead of 
having to integrate over the entire flowfield, one only needs 
to integrate over three relatively small subregions. 

By using the vorticity-transport equation and the no-slip 
condition on the surfaces of the solid bodies, Wu and Sankar 
(1980) also obtained the following equation expressing the 
temporal conservation of "total vorticity" (i.e., circulation) 

4 \ todS--
dt h 

0 (4) 

where the integral is carried out over the same region as the 
integral in Eq. (3). Equation (4) is also valid for viscous as 
well as inviscid models of flows. 

2.2 Boundary Layer Adjoining the Surface of the Air
foil. It is assumed that the flow in the layer adjoining the 
surface of the airfoil is accurately predicted by the boundary-
layer theory, a theory that provides an asymptotic approxi
mation for high Reynolds numbers to the solution of the Na-
vier-Stokes equations. However, in some cases of strong blade-
vortex interaction, the boundary-layer approximation could 
break down locally when vorticity in the stream passes very 
close to the surface of the blade. In boundary-layer theory, 
the pressure predicted by the outer (irrotational) flow on the 
surface of the airfoil appears as the driving (forcing) term in 

Fig. 1 Airfoil and the coordinate systems: (a) before discretization; (6) 
after discretization, o represents a node point (where two panels join) 
and * is a control point (where the no-penetration condition is imposed). 
The spacing is nonuniform; smaller panels are used near the leading 
and trailing edges. (e,„ ey) are base vectors in the local frame, and (Ex, 
Ey) are those in the global frame. 

the governing equations and the tangential component of the 
velocity given by the outer flow at the surface of the airfoil 
appears in the boundary (matching) condition. Thus, according 
to this theory, the outer flow must be known before the flow 
in the boundary layer can be obtained. But it is also true that, 
if the flow (specifically the vorticity) is known in the boundary 
layer and wake and if the motion of the airfoil is known, the 
corresponding outer flow can be computed by means of Eq. 
(3). The flow created by the vorticity disturbs the oncoming 
freestream in such a way that the no-penetration and no-slip 
conditions are satisfied by the resulting velocity field. 

In the vorticity-panel approach, one first integrates Eq. (3) 
across the thickness of the boundary layer, using the boundary-
layer approximation for the vorticity, and then lets the bound
ary-layer thickness approach zero. The contribution of the 
boundary layer in Eq. (3) is 

V6(r 27T Jc 
fl(r0, / ) x ( r - r 0 ) 

l r - r 0 l 2 dSb(r0) 

1 v I Y[/OO), t](r-r0) 
- — e2 x (D : 72 dl(r0) 

2ir j c I r - r01 

(5«) 

(5b) 

where V/, is the velocity induced by the vorticity in the boundary 
layer, Si, is the region of the boundary layer, ez is a unit vector 
perpendicular to the flowfield chosen so as to form a right-
hand system with the base vectors in the plane of the flow, 
the line integral is carried out along the contour of the airfoil 
C, I is the distance along C measured from the lower trailing 
edge, and 

y(l, t)ez= l im 
6-0 

1.8(0 

Q(l, n, t)dn (6a) 

7 ( / , t)= lim 
Re-oo 
6-0 

Jn dn dn = « ( / , 0 + , O 

-u(l, 0, t) = Au(l, t) (6b) 

where Re is the Reynolds number, 5 the thickness of the bound
ary layer, n is the coordinate in the outward-pointing normal 
direction on the contour of the airfoil C, Au is the velocity of 
the fluid relative to the surface of the airfoil and is positive in 
the direction of increasing /, u(l, 0 + , t) is the velocity at the 
outer edge of the boundary layer, and «(/, 0, t) is the velocity 
of the fluid in contact with the surface. 

Hence, the thin boundary layer is approximated as a bound 
vortex sheet of strength - 7 on the surface of the airfoil. If 
the no-slip condition is imposed on the surface, 7 is the tan
gential component of the velocity of the fluid at the edge of 
the boundary layer relative to the nearest point in the surface. 
The normal component of the relative velocity is zero if the 
no-penetration condition is satisfied. 

The line integral in Eq. (5) is evaluated first by dividing the 
contour of the airfoil into a number of short straight elements 
(see Fig. 1) and then by approximating 7 as a linear function 
of position along each element. The values of 7 in adjoining 
elements are equal at the common point where the two are 
connected, the so-called node. 

The calculation of the velocity induced by the vorticity on 
the individual elements is facilitated by introducing a local 
coordinate system. The origin of the local frame of reference 
for element / is placed at node i, the local x-axis runs along 
the element, and the local .y-axis points outward from the airfoil 
into the flowfield (see Fig. 1). For a typical element /, the 
transformations between the two frames are 

d\ d2 

-d2 di 

'X-X\ 
Y-Y; 

(la) 
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d\ d2 

-d2 di 

Ex 

Ey 
(76) 

where (x, y) are coordinates in the local frame which has the 
base vectors (e*, e,) and (X, Y) are the corresponding coor
dinates in the global frame which has the base vectors (Ex, 
Ey), (X„ YD are the global coordinates of the node that serves 
as the origin of the local frame, and 

where 

tf, = (X ; + 1-X ;) /A/ ; 

d2 = (Yl+l-Y,)/M, 

A// = V « + i - X , ) 2 + ( ^ + i - ^ ) 2 

is the length of element /. 
The two linear basis functions 

/ i t f ) = l -
A/j 

and 

/ 2 « ) = 
A// 

(8) 

(9) 

(10a) 

(106) 

(11) 

are used to describe y on each element: 

7,(|, 0 = G, (O/ 1 ( l ) + G,+ , (O / 2 ( ? ) 

where 0 < £ < A/,, G, and Gi+i are the values of y at nodes 
/ and / + 1, and A/, is given by Eq. (9). 

From Eqs. (5), (10), and (11), it follows that, in the local 
frame, the components of the velocity induced by the vorticity 
on a single element are given by 

1 
PA/,-

= Gj[vlxiex + vlyiey\ + Gi+, [ t^e* + v2yiey] (12) 

where 

Vlxi = 
1 

^ i " 

" M = 

"2W= 

2TTA/; 

1 

IvAlj 

27TA/,-

1 

27rA/,-

[Ali-x)A8-0.5ylnR] 

\yAd-Ali + 0.5(Ali~x) In R] 

(xAd + O.SylnR) 

{All-yA8 + 0.5x In R) 

where 

and 

Ad = tan ' ( - I - tan ' ' '-

R = 

yi \ y 

(x-Al,)2+y2 

x2+y2 

(13) 

(14) 

(15) 

Using the inverse transformation of Eq. (7) one can obtain 
the velocity induced by element / in terms of components in 
the global frame: 

Vbi(X, Y,t) = Gi[VlxiEx+ V1Y,EY] 
+ Gi+llV2XiEx+V2YiEY} (16) 

where 

Vkxi 

VkYi d2 

d2 

di 

vk. 
vkyi. 

(17) 

for k = 1 and 2. 

2.3 Contribution to the Flowfield From the Rotation of 
Airfoils. As discussed in the articles of Wu and Thompson 
(1973) and Wu and Sankar (1980), the motion of the airfoil 
also makes a contribution to the flowfield: 

V„(r, 0 

= _L (f, (r ~ ro)[v/(ro) • n(r0)] - [v;(r0) x n(r0)j x (r - r0) 
27r J c I r — r01 

dl(r0) 

(18) 

where V„ is the velocity induced by the motion of the airfoil, 
n is the unit outward-pointing vector normal to the contour 
of the airfoil C, v/ is the velocity of the airfoil at r0. Equation 
(18) can also be written as 

V ^ , / ) = f o x ( r ' r ° 2 r f S a ( r 0 ) (19) 
2-ir Js I r — r01 

where Sa is the interior of the airfoil, and 

0 = 2co„ (20) 

where io„ is the angular velocity of the airfoil. 
It follows from Eq. (20) that the rotation of the airfoil only 

makes a contribution to V„ when oo„ ̂  0, which explains why 
the region S in Eq. (3) includes the flowfield as well as the 
interiors of any objects in the flowfield. Here S includes the 
flowfield, S/, and the interior of the rotating airfoil, Sa, i.e., 

S = S/+Sa (21) 

To expedite the numerical calculations, Eq. (18) is used 
instead of Eq. (19). 

2.4 Condition at the Trailing Edge and Vorticity-Shedding 
Rate. The Euler equation can be applied on the flow side (as 
opposed to the airfoil side) of the bound vortex sheet that 
imitates the boundary layer, where viscous effects are ignor-
able, and written in terms of the relative velocity y. The equa
tion takes the following form 

^7 ^7 1 dp .„„ 
T7 + 7 T 7 + [ a 0 + wf lxr + w(,x(o)flxr)]-e,= — - f (22) 
at ol p ol 

where r is the position vector relative to the origin of the moving 
coordinate system fixed on the airfoil, e/ is the unit vector 
tangent to the contour pointing in the direction of increasing 
/, p is the pressure, p is the density of the fluid, aa is the 
acceleration of the origin of the moving coordinate system, 
and 

(aa=6ez 

«. = &* (23) 

are the angular velocity and acceleration of the airfoil, re
spectively, where 6 is the angle of rotation which is positive in 
the counterclockwise direction. 

Integrating Eq. (22) in the clockwise direction from the lower 
to the upper trailing edge and then equating the pressures on 
the upper and lower surfaces (no pressure discontinuity) at the 
trailing edge lead to 

2 
7 i " 

2 
•yu 7(/, t)dt-2dSa 

dT 

dt 
= - r (24) 

where the subscripts U and L denote quantities on the upper 

and lower surfaces at the trailing edge, respectively, (D 7c?/ 

is the relative circulation (i.e., circulation computed with the 
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relative velocities) in the clockwise direction around the airfoil, 
Sa is the cross-section area of the airfoil and 

I ?(/, t)dl-26Sa (25) 

is the absolute circulation around the airfoil in the clockwise 
direction. 

When the flow is unsteady, dT/dt is not zero and the relative 
velocities on the upper and lower surfaces must be different. 
This difference is a manifestation of the vortex sheet (wake) 
that must form there in an unsteady flow. 

It follows from Eq. (4) that 

dt ;(r+rw): 
_dr + di\,=0 

' dt dt 

where r„, is the circulation around the wake, and 

r + r„, = constant 

is the total circulation around the flowfield. 
Then it follows from Eqs, (24) and (26) that 

dTw dT^ 

dt ~~ dt'~ 

2 2 
7 I / ~ 7 L 

(26) 

(27) 

(28) 

where dT„/dt is often called the vorticity-shedding rate. Vor-
ticity is shed from the airfoil and added to the wake as described 
by Eq. (28). 

To determine the vorticity-shedding rate, an understanding 
of the flowfield in the immediate neighborhood of the trailing 
edge is necessary so that yy and yL can be determined. For 
unsteady flows, Giesing (1969) analyzed the kinematic char
acteristics around the trailing edge by the conformal-mapping 
method. Based on the assumption that the mean velocity at 
the trailing edge is finite and nonzero, he showed that the 
vortex sheet was shed parallel to the upper or lower surface 
of the trailing edge depending on the direction of the shed 
vorticity. Maskell (1971) came to the same conclusion later. 
But Basu and Hancock (1978) pointed out that the Giesing/ 
Maskell model cannot reach the steady case as dT/dt in Eq. 
(28) goes to zero because the stagnation streamline bisects the 
trailing-edge angle in the steady case. They argued without 
proof that, as dT/dt -* 0, the curvature of the streamline 
emanating from the trailing edge tends to infinity. 

The flow in the trailing-edge region has also been investigated 
experimentally. Studies by Poling and Telionis (1986, 1987) 
and the thesis of Poling (1985) contain extensive reviews of 
earlier work. In their experiment, Poling and Telionis released 
dyes of different colors into the upper-surface and lower-sur
face boundary layers on a NACA 0012 airfoil oscillating in 
pitch around the quarter-chord point. For reduced frequencies 
in the range considered here, they observed that during most 
of the downstroke, the shear layer emanating from the trailing 
edge had the color of the lower-surface boundary layer while 
a pool of the color of the upper-surface boundary layer formed 
on the upper surface at the trailing edge. The observations 
support the Giesing/Maskell model of trailing-edge flow. More 
recently, Liu et al. (1990) studied the flow in the trailing-edge 
region. In this experiment, they placed a rotating ellipse down
stream from and below the trailing edge of a fixed NACA 
0012 airfoil. They observed the unsteady flow near the trailing 
edge of the fixed airfoil, and also concluded that the model 
described above is realistic. 

In the present discussion, the simulation of the flowfield in 
the region of the trailing edge is based on the Giesing/Maskell 
model. As illustrated in Fig. 2, the flow at the trailing edge 
has the following characteristics: 

1. When dT/dt > 0, yL jt 0 and yv = 0; the streamline 
(for the velocity field relative to the moving airfoil) along the 
lower surface of the airfoil leaves the airfoil smoothly (i.e., 

ZT^ri^i'-'-] trailing-edge 
— : i i iB--- i f anale 

(b) 

Fig. 2 Physical model of the trailing-edge flow used in the numerical 
simulation: (a) clockwise circulation (r) around the airfoil is increasing; 
(b) the flow is steady; (c) clockwise circulation is decreasing. The direc
tion of the vorticity being shed is indicated on the trailing-edge stream
line, yu and yL refer to the relative velocities on the upper and lower 
surfaces at the trailing edge. The trailing edge streamline lies either on 
or within the trailing-edge angle. 

node 
pX control point lA iu 

element number 

Y (relative velocity) 

the portion of relative 
velocity approximated 
by the vortex r t when 

dt 

increasing I 

(b) 

Fig. 3 Numerical model of the trailing edge: (a) a vortex point of cir
culation r, is placed exactly on the trailing edge; (b) the piecewise linear 
continuous velocity distribution. For the case shown, drldt < 0 (r is 
the clockwise circulation around the foil), r, = (1/2) yuAlu. 

tangent to the lower surface), and its counterpart along the 
upper surface has a sharp corner at the trailing edge (i.e., the 
relative velocity along the upper surface is zero at the trailing 
edge). 

2. When dT/dt = 0, yL = yv = 0; the stagnation stream
line bisects the trailing-edge angle. 

3. When dT/dt < 0, yL = 0 and yv * 0; the flow relative 
to the airfoil comes smoothly off the upper surface and con
tains a stagnation point on the lower surface at the trailing 
edge. 

In the numerical model discussed here, the values of the 
relative velocity on both the upper and lower surfaces of the 
trailing edge (yu and yL) are not directly calculated. Instead, 
a vortex point of circulation T, is placed at the trailing edge 
to approximately represent the nonzero, linearly distributed 
relative velocity given by Eq. (11) on either the upper or the 
lower surface at the trailing edge (refer to Fig. 3). The rela
tionship between T, and the relative velocities is given by 

f A ' i / 

Jo 

(•A'L 

Tt= 7z/i( 
Jn 

7t/2«)rff = 
yuAlu 

7i = 0, for T,>0 (29a) 

i ( ! ¥ S = ^ 7c/=0, for T,<0 (29b) 

where Alv and A/L are the panel lengths on the upper and lower 
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surfaces at the trailing edge, respectively. From Eq. (29) yv 
and yL can be calculated if T, is known. 

It follows from Eqs. (28) and (29) that the vorticity shed 
into the wake during the time interval At is given by 

2r2 

AIV-=—fAt for r ( >0 (30a) 
Al(j 

2r2 

ATw=-—i;At for r ( <0 (306) 
AIL 

Hsu and Wu (1986, 1988)' developed an alternative to the 
above model of the trailing-edge flowfield. After applying the 
momentum equation to a small control volume at the trailing 
edge, they concluded that the trailing-edge flow does not have 
to be tangent to one of the surfaces. However, in arriving at 
their conclusion, they did not impose Eq. (28). When Eq. (28) 
is imposed, the Giesing/Maskell model and the Hsu/Wu model 
agree. 

For the potential flow past infinitesimally thin boundary 
layers, it is noted that, if the trailing-edge streamline is above 
the trailing-edge wedge, the speed along the lower-surface 
streamline is infinite at the trailing edge and there is still a 
stagnation point on the upper-surface streamline. 

When the reduced frequency and amplitude are sufficiently 
high it appears that the vorticity being shed from the trailing 
edge is strong enough to create a stagnation point on the 
surface, slightly away from the trailing edge. And, in fact, 
Ohashi and Ishikawa (1972) observed such a flowfield exper
imentally. Such a flowfield can also develop at the instant 
following an impulsive start. The simulation discussed here 
also predicts a stagnation point close to, but not at, the trailing 
edge both for the instant after an impulsive start and during 
cyclic motion when the reduced frequency is greater than five. 

Doing their experiment in air, Ohashi and Ishikawa (1972) 
placed thin paper containing a solution of Nessler reagent on 
one side of the trailing edge and released ammonia gas into 
the boundary layer on the other side. The reagent changed 
color during the motion, indicating that it came in contact 
with the ammonia and suggesting that the flow turned the 
corner instead of coming off the surface smoothly. However, 
the reduced frequency and the amplitude had to exceed certain 
limits before this happened. For amplitudes and frequencies 
below the limits, the observations of Ohashi and Ishikawa also 
appear consistent with the Giesing-Maskell model. 

2.5 Discretization of Wakes. Ideally, the wake should be 
modelled as a continuous vortex sheet emanating from the 
trailing edge with the circulation being added according to Eq. 
(28). However, the sheet wraps around and rolls up while 
stretching. In fact, it seems that a discontinuity in the curvature 
appears. This is a process that is difficult to simulate with a 
continuous sheet (Rosenhead, 1931). Actually, the evolution 
of vortex sheets is accompanied by the problem of instability. 
Krasny (1986, 1988a,b) studied the stability of vortex sheets 
and their simulations. Extensive work on this subject has also 
been presented in the articles by Meiron et al. (1982), Moore 
(1979, 1984), Pozrikidis and Higdon (1985), Caflisch (1988), 
Aref et al. (1988), and many others. 

An alternative to the continuous vortex sheet as a model of 
the wake is the system of vortex points or vortex blobs. At 
every time step, a vortex blob of circulation Ar^ given by Eq. 
(30) is shed into the wake. Then the circulation around the 
wake, Yw, is the sum of the circulations around the individual 
vortices 

M 

where Mis the number of vortices in the discretized wake, and 
IV is the circulation of vortex k. 

The use of a system of vortex points to represent a continuous 

vortex sheet was first proposed by Rosenhead (1931), though 
the concept of a vortex point was introduced much earlier by 
Helmholtz (1858). The system of vortex points is not without 
a major problem of its own: eventually two vortex points are 
convected close to each other, and then, as a result of the 
singularity in the expression for the velocity field generated by 
a vortex point, at the next time step they are convected very 
far apart. 

One of the methods to correct this irregular, seemingly cha
otic behavior involves the concept of vortex blobs (see, e.g., 
Chorin and Bernard, 1973; Leonard, 1980; and Spalart, 1988). 
The vortex blob distributes the vorticity of a vortex point over 
a small, but finite, circular core by means of a so-called core 
function and thereby eliminates singularities. For the numerical 
results presented here, the following core function is used 

F(d)=T7d~2 (32a) 

where 

a 

where a is the small radius of the vortex blob, r represents the 
point in the flowfield where the velocity is being calculated, 
and rk represents the point where the vortex is located. With 
the core function described in Eq. (32), the contribution of 
the wake in Eq. (3) is approximated by 

i M 

V^(r, / )= - — e,x y ; TkF(d)- k-2 

1 M 

= ~T-^y,rk-. TT—2 (33) 
2T £r{ I r - r* I + (T 

where \ w is the velocity induced by the wake and clockwise 
is taken as the positive direction of Tk. Vortex blobs cannot 
induce velocity on themselves. 

However, this approach is not entirely satisfactory. Vortex 
blobs collect in some regions and separate in others [refer to 
part (a) of Fig. 6]; the result can be a very uneven spatial 
distribution and, consequently, a very poor representation of 
the wake. The numerical phenomenon corresponds to the phys
ical stretching and coiling of the actual vortex sheet. The vor
tex-blob simulation of the continuous vortex sheet can only 
be improved by splitting the vortices as they begin to separate 
(see, e.g.,Mooketal., 1987,1989). Splitting is discussed below. 

The wake is viewed as a thin free shear layer in an inviscid 
fluid. Associated with each element of its length are mean 
values of thickness (averages over the elemental lengths) and 
circulation (averages over the cross-section areas associated 
with the elemental lengths). For each element of the wake in 
a barotropic, two-dimensional, inviscid flow 

£(m4)=£(sr)=o (34) 

and, when the flow is incompressible, it follows that 
D DO, 
—(<14) = 0 and —- = 0 (35) 
DV ' Dt y ' 

where (D/Dt) ( ) is the substantial derivative, 5,4 is the cross-
sectional area of the element of the wake, Q is the mean value 
of the vorticity associated with that element, and 8T is the 
circulation around that element. 

When a system of discrete vortices is used to imitate the 
wake, each vortex point (or vortex blob) approximates one of 
the elemental lengths of the free shear layer, and the value of 
the circulation around an individual point or blob is the ST of 
the corresponding elemental length. In other words, each cir
culation in the system of discrete points or blobs represents 
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r2 
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r,+r2 

Fig. 4 Splitting and combining schemes: (a) the original two vortices 
with circulations r, and r2 separated by the distance As, which is greater 
than a critical length for splitting, are divided into three vortices as 
indicated; (b) the original two vortices with circulations r, and r2 sep
arated by the distance As, which is less than a critical length for com
bining, are merged into a single vortex as indicated. 

an elemental length of the free shear layer that imitates the 
actual wake. 

When the vortex sheet stretches, its thickness decreases while 
its length increases [in such a way that (D/Dt) (8A) = 0] and 
6T remains constant. In the system of discrete blobs, stretching 
is manifested when two sequentially shed blobs increasingly 
separate as they convect. If the elemental lengths are to remain 
approximately uniform as the wake stretches, then more ele
ments will be needed to represent the stretched portion of the 
free shear layer. The addition of more elemental lengths cor
responds to the addition of more discrete vortices to the system. 

As illustrated in part (a) of Fig. 4, whenever two successively 
shed blobs are converted apart by a distance greater than a 
specified critical length, they are split into three. The new 
vortex has the circulation equal to one third of the sum of the 
circulations of the original two and is placed at the midpoint 
between them. The circulations around the original two vor
tices are reduced to two thirds of their original values. The 
above procedure is repeated at each time step until no two 
sequencial blobs are farther apart than the critical distance. 

When two blobs are converted very close, they are combined. 
The new blob has circulation equal to the sum of the circu
lations of the original two and is placed at the centroid of the 
original two (Spalart, 1988) as shown in part (b) of Fig. 4. 
Blobs having circulations of different signs are not combined 
because the denominator in the formula given in Fig. 4 can be 
very small. 

Sarpkaya and Schoaff (1979) proposed a scheme in which 
the vortex points are repositioned in order to achieve uniform 
spacing and the circulations are redistributed in order to main
tain (approximately) the spatial distribution. However, because 
no more vortices are added (i.e., there is no splitting), this 
approach does not adequately account for stretching. 

Pozrikidis and Higdon (1985) simulated the evolution of 
thick shear layers of uniform vorticity. They expressed the 
velocity field generated by the vortex layer as a line integral, 
which they evaluated numerically. The computed velocity field 
was used to determine the displacements of so-called marker 
points on the boundary of the vorticity-bearing region. Then 
the velocity field was recomputed, etc. Some of their results 
show the shear layers forming regions similar to the vortical 
structures obtained in the present simulation. However, in their 
results the regions resembling the vortical structures have uni
form vorticity instead of a spatial variation such as the results 
presented here contain. 

2.6 Aerodynamic Loads. For the 2-D problem consid

ered here, the pressure distribution on the surface on the airfoil 
can be obtained by integrating Eq. (22) from the lower trailing 
edge 

,(„-*-$ J V M 

•in 
XT + o)ax{uaXT)]-e/dl\ (36) 

where pt is the pressure at the trailing edge. It is not necessary 
to knowp, in the calculation of the aerodynamic loads because 
p, is only a function of time and the aerodynamic loads are 
obtained by integrating the pressure around the closed contour 
of the airfoil. When the airfoil is stationary, aa, oia and oia in 
Eq. (36) are zero. 

2.7 Equations for the Unknowns and Numerical Proce
dures. If the contour of the airfoil C is approximated by N 
panels, then there are N + 1 nodes, with the lower trailing 
edge being numbered 1 and the upper trailing edge being num
bered N + 1. The element size is nonuniform in the present 
scheme, the elements near the leading and trailing edges being 
smaller than those in the mid-chord region. The approximation 
of the very last portion of 7 by a vortex point becomes more 
accurate as the panels adjoining the trailing edge become 
smaller. The number of elements in Fig. 1 is 18, but all the 
results presented here were computed with 36 or more. 

Comparisons of results obtained with a single vortex at the 
trailing edge and those obtained with a continuous distribution 
of vorticity over the element at the trailing edge agree to two 
places for 36 elements. The agreement can be expected to 
improve when the number of elements is increased. The com
parisons were made for an impulsive start; in this case, the 
vorticity being shed from the trailing edge always has the same 
sign. In other cases, such as an airfoil oscillating in pitch or 
plunge, the vorticity being shed can change sign. As discussed 
above, vorticity with different signs is shed from different 
surfaces. Thus, for the oscillating airfoils, one must guess at 
the beginning of each time step from which surface the vorticity 
will be shed and then at the end of the time step check if the 
assumption is true. If the assumption is not true, the guess 
must be changed and the calculation must be repeated. The 
use of a discrete vortex at the trailing edge can simplify the 
procedure by eliminating the need to guess and speed the cal
culations. 

Because the vorticity over either the first or the last element 
is concentrated in a vortex point of circulation T, at the trailing 
edge [refer to Eq. (29)], G\ and GN+i are both zero. In other 
words, the vortex point of circulation T, at the trailing edge 
accounts for the fact that either yy or yL is nonzero, depending 
on the sign of dY/dt. The values of the relative surface velocity 
at each node, except the two at the trailing edge, G„ and the 
circulation around the vortex at the trailing edge, Y„ are to
gether N unknowns. 

With Eq. (11), the relative circulation around the airfoil 
appearing in Eq. (24) is approximated as 

C 1 N 

<j> ydl=-J^(.G, + Gl+i)£J, + Tt (37) 
C i=i 

where iVis the number of elements on the contour of the airfoil, 
A/, is given by Eq. (9) and G\ = GN+i = 0. 

It follows from Eq. (5) that the velocity induced by the bound 
vortex sheet on the surface of the airfoil at point r at time t 
is approximated as 

2TT l r - r , l 2 (38) 
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where Vw is given by Eq. (16) with G\ = GN+1 = 0, and r, is 
the position vector of the trailing edge. 

The total velocity is 
V = V6 + Va + V(r+VO0 (39) 

where \b, \a, \w are given by Eqs. (38), (18), and (33), re
spectively, and Voo is the velocity of the freestream. 

It follows from Eqs. (27), (25), (37), and (31) that 
, i = N M 

9 5 ] (•G/+G,-+i)A/, + r , -2 (?S f l +2] r * = c o n s t a n t (40> 
2 1=1 ' * = 1 

This equation is the principle of total-vorticity conservation 
in the flowfield, and is linear in the G, and Tt. 

The no-penetration condition on the surface of the airfoil 
is 

Table 1 The velocity at the trailing edge as a function of the 
time step, At, and the number of elements, N 

(V-v,)-n = 0 (41) 
where V is given by Eq. (3) or Eq. (39), v/ is the velocity of 
the surface of the airfoil, and n is a vector normal to the contour 
of the airfoil. 

Equation (41) is applied at the control point of each element 
(in the present model, control points are the midpoints of the 
elements as shown in Figs. 1 and 3). Then the number of linear 
equations for the G,- and V, that result from applying Eq. (41) 
is N. With Eq. (40) which is the constraint on the circulation 
around both the airfoil and its wake, there is a total of N + 
1 linear equations for Nunknowns. Consequently, an optimal 
solution is obtained by minimizing the sum of the squares of 
the errors at the control points subject to the equality constraint 
[Eq. (40)] imposed on the circulation. 

If there are more than one airfoil in the flow, Eq. (41) should 
be applied on the surface of each airfoil, and the left-hand 
side of Eq. (40) should be the circulation around the entire 
flowfield. 

At every time tk, a vortex blob with circulation Tk = ATV 
is released from the trailing edge into the wake. The vortex 
blobs already in the wake are convected at the velocity of the 
local fluid particles while their circulations remain unchanged. 
The procedure produces a continuous pressure field in an in-
viscid fluid; thus, the wake is modelled as a region of inviscid, 
rotational flow. During the time interval At, the displacement 
of a vortex blob is given by 

Ar = VA? (42) 

The numerical procedure can be summarized as follows: 

1. The initial flow is specified. As examples, the flow may 
be steady for some specified angle of attack, or the fluid may 
be at rest, or the flow may start from a previously calculated 
unsteady condition. 

2. The time is advanced one step. 
3. The wake is convected and the splitting/combining pro

cedure is implemented. 
4. The position and velocity of the airfoil are computed 

from the prescribed motion. 
5. The values of y at the nodes, the G,- (except for / = 1 

and N + 1), and Tt are computed from the constrained-op
timization scheme. 

6. If desired, pressure and loads are computed. 
7. The computation is returned to step 2. 

To check the convergence of this method as the number of 
elements on the contour of the airfoil and the size of the time-
step are varied, an impulsively started flow around a NACA 
0012 airfoil at 10 deg angle of attack is tested by calculating 
the velocities at the trailing edge and the circulation around 
the wake at time t = \. For such a case, the relative velocity 
at the upper trailing edge, yUt is zero while the relative velocity 
at the lower trailing edge, yL, is nonzero. 

In Table 1, the values of the relative velocity at the trailing 

At N=36 N=12 Af=108 7V=144 
0.02 
0.01 
0.005 
0.0025 
0.00125 
0.000625 

-0.4736 
-0.4762 
-0.4788 
-0.4796 
-0.4800 
-0.4802 

-0.4801 
-0.4824 
-0.4840 
-0.4846 
-0.4849 

-0.4840 
-0.4856 
-0.4865 
-0.4869 

-0.4864 
-0.4876 
-0.4881 

Table 2 The circulation around the wake a function of the 
time step, At, and the number of elements, TV 

At 

0.02 
0.01 
0.005 
0.0025 
0.00125 
0.000625 

JV=36 

-0.4819 
-0.4735 
-0.4678 
-0.4653 
-0.4641 
-0.4635 

V -

e„ 

N=12 

-0.4727 
-0.4660 
-0.4620 
-0.4601 
-0.4592 

» 

-c — 

N=108 

-0.4753 
-0.4711 
-0.4686 
-0.4674 

^ 

N=144 

-0.4764 
-0.4736 
-0.4722 

quarter-chord po in t 

Fig. 5 Airfoil pitching about its quarter-chord point 

edge, yL, at time t = 1 are listed for different sizes of the time 
step, At, and different numbers of elements, N. 

In Table 2, the values of the circulation around the wake, 
Yw, at time t = 1 are listed for different sizes of the time step, 
At, and different numbers of elements, N. 

The blank boxes in Table 1 and Table 2 indicate that the 
size of the time-step is too large to use with the corresponding 
number of elements. The smaller the elements are (the larger 
TV is), the smaller the time step must be to obtain reasonable 
results. As At decreases by being cut in half, yL and Yw have 
only slight changes. And for the same time step, the results 
obtained by using different numbers of elements are close. The 
method gives reasonably convergent solutions as the number 
of the elements increases and the size of the time step decreases. 

The unsteady solution is nearly equal to the steady-state 
solution after the wing has traveled 60 chords following an 
impulsive start. The numerical value for the steady-state lift 
is about eight to ten percent higher than the experimental value 
for a Reynolds number of 10 . 

3 Examples 
In this section, some examples of numerical simulations of 

wakes and blade-vortex interaction are presented. In all cal
culations unless otherwise stated, NACA 0012 airfoils are used, 
and all variables have been nondimensionalized by the free-
stream speed, K„, and the chord length, C, of the airfoil. 

3.1 Wakes of Airfoils. An airfoil pitching around its fixed 
quarter-chord point is represented in Fig. 5. The pitch angle, 
dp (degrees), is positive in the clockwise direction and given by 

0p=-lOdegcos(2fo) (43) 

where k = uC/2Vm is the reduced frequency and a> is the 
dimensional frequency. Initially, the flow around the airfoil 
is steady. As soon as the pitching starts, the motion becomes 
unsteady and the airfoil starts to shed vorticity from the trailing 
edge. 

First the reduced frequency is chosen as k = 2.77, so that 
the present results can be compared with some experimental 
results. In Fig. 6, the wake after one and one quarter cycles 
of pitching is shown. Each dot in the wake region gives the 
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Fig. 6 Computed wakes of a pitching airfoil: the pitch angle is given 
by Eq. (43) with k = 2.77. After one and one quarter cycles (250 time 
steps), the airfoil is rotating counter-clockwise. Each point shows the 
location of a vortex blob: (a) without splitting, 250 vortex blobs, (b) with 
splitting and combining, 512 vortex blobs, and (c) with splitting for a 
smaller critical length, 3818 vortex blobs. 

(a) 

V _ - -

(b) 

(c) ___ 

>> . - ' 

(d) 

Fig. 7 Physical mechanism for coiling of the free shear layer under the 
influence of the velocity it induces on itself: (a) undisturbed layer of 
clockwise vorticity; (b) the layer after the introduction of a small dis
turbance; (c) and (d) the subsequent coiling. 

location of a vortex blob. In part (a) of Fig. 6 the splitting 
and combining procedures are not used, and there are 250 
vortex blobs in the wake after 250 time steps. In part (b) of 
Fig. 6, the splitting and combining procedures are used for the 
same time step used in part («). The blobs are split (by using 
a critical length related to the shortest panel on the airfoil) 
and combined at each time step, and there are 512 blobs in 
the wake after 250 time steps. In part (c) of Fig. 6, a smaller 
critical length for splitting is used, and there are 3818 blobs. 
Comparing the three wakes, one sees that the large-scale struc
tures of the wake are about the same, but the splitting pro
cedure provides more details. These results clearly show a 
strong trend to converge, which is typical of all cases treated 
by the method described here. 

(c ) 

Fig. 8 Wakes of a plunging airfoil: (a) the numerical result calculated 
by Giesing (1968) where Vv and Vh are, respectively, the vertical and 
horizontal velocity components, (£>) the flow visualization obtained by 
Bratt (1950), and (c) the numerical result obtained by the present method. 

The dark regions in parts (b) and (c) of Fig. 6, which contain 
many vortices, are called regions of concentrated vorticity in 
this paper. The points in parts (b) and (c) of Fig. 6 are not 
connected; however, they are so densely packed that the rep
resentation of the wake appears to be continuous. 

The physical mechanism causing the regions of concentrated 
vorticity to form is illustrated in Fig. 7. In part (a) an undis
turbed sheet of clockwise vorticity is represented. In part (b) 
a small disturbance is introduced. The elements of the sheet 
above their original position are accelerated to the right under 
the influence of the velocity field induced by the elements of 
the sheet below their original position. Conversely, the ele
ments below their original position are accelerated to the left. 
The effect is to stretch the sheet (requiring the addition of 
more vortices to maintain the spatial resolution when the sheet 
is represented by a system of discrete vortices) initially and 
then to coil, or to wrap, the sheet which eventually causes the 
vorticity to collect. The direction of wrapping agrees with the 
direction of the vorticity. In parts (c) and (d) of Fig. 7, the 
sheet is represented at subsequent times. During the stretching/ 
coiling process, vorticity is drawn into the region where the 
disturbance was introduced from the portions of the sheet on 
both sides; consequently, regions of rather concentrated vor
ticity form. The strength along the sheet connecting two suc
cessively shed regions of concentrated vorticity is very small, 
practically zero. The regions of densely packed vorticity yield 
smooth velocity fields, as shown later in another example. 

The importance of splitting discrete vortices is further il
lustrated in the case where the airfoil oscillates in plunge: the 
vertical displacement, y, is given by 

y=A sin fi/ (44) 

where A is the amplitude of oscillation, fi = oiC/Vx is the 
reduced frequency and oi is the dimensional frequency. In part 
(a) of Fig. 8, which is taken from Giesing's paper (1968), the 
solution was computed by a source-panel method, where A = 
0.3105 chord and fi = 17. The dots represent the positions of 
the vortices shed previously at the trailing edge, and the line 
connecting the vortices was faired in by Giesing. The sequence 
in which the vortices were shed, some prior knowledge of the 
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(a) 

(b) 

(c) 

( d ) 

Fig. 9 Wake structures of a plunging airfoil: (a) the three regions ob
served by Ohashi and Ishikawa (1972) in the frequency-amplitude space 
where the wakes have distinct structures. The numerical results are 
shown in (6), (c), and (d). (b) A = 0.014, i! = 5; (c) A = 0.05, 0 = 5; (d) 
A = 0.05, fi = 2.5. 

wake, and clearly some imagination were needed to draw the 
line. Similar results were obtained by Katz and Weihs (1978, 
1981). The wrapping/stretching mechanism is clearly evident 
and so is the need to add more vortices in order to preserve 
the spatial resolution. In part (b) of Fig. 8, the flow visual
ization obtained by Bratt (1950) is shown. Bratt introduced 
smoke into the airstream ahead of the leading edge. Part (b) 
of Fig. 8 served as a guide in the construction of part (a) of 
Fig. 8. In part (c), the wake computed by implementing the 
splitting scheme is shown. The large-scale structures of the 
wake seem to be accurately predicted by the numerical results. 
Using vortex blobs, Krasny (1991) simulated some wakes. He 
prescribed initial locations and distributions of circulations for 
some vortex sheets and then computed their evolution. He 
compared his results qualitatively with the observations of 
Couder and Basdevant (1986) and found good agreement. 

Ohashi and Ishikawa (1972) also studied the wakes behind 
plunging airfoils. They heated the air that passed over the upper 
surface of an NACA 65-010 airfoil. The resulting sharp gra
dient in the density of the air downstream from the trailing 
edge was observed by means of a Schlieren apparatus. They 
observed three regions in the frequency-amplitude domain 
where the wakes have distinct structures. These regions are 
given in part (a) of Fig. 9. The numerically calculated wakes 
are shown in parts (b), (c), and (d). In part (fo), the amplitude 
of plunge (A = 0.014 chord) is small and the frequency (fl = 
5) is high; the structure of the wake is similar to the one shown 

(c) 

Fig. 10 Wakes behind an impulsively started airfoil: (a) visualization 
from the film loop (Wu and Thompson, 1973); (b) numerical result; (c) a 
time sequence of computed wakes behind an airfoil experiencing an 
impulsive start followed by an impulsive stop. 

in Region I of part (a). In part (c), the amplitude of plunge 
(A = 0.05 chord) is larger and the frequency (fi = 5) is the 
same; the structure of the wake is similar to the one in Region 
III of part («). In part (d) the amplitude of plunge (A = 0.05 
chord) is the same as that in the previous case but the frequency 
(fl = 2.5) is smaller; the structure of the wake is similar to 
the one in Region II of part (a). The calculated results follow 
the same trend as the observations, but the calculated bound
aries between the regions are neither clear nor in the same 
approximate locations as the observed boundaries. The dif
ferent airfoils used in the experiment and the numerical cal
culation (NACA 0012 airfoil is used in the numerical solution) 
is one of the reasons causing this discrepancy. It is also not 
known how much influence the buoyant forces caused by heat
ing have on the wake geometry. 

In Fig. 10, the wakes behind an impulsively started airfoil 
are shown. In part (a), one frame from a well-known film loop 
(see the last reference) shown to beginning classes in fluid 
mechanics is given. The experiment was performed by placing 
powder on the surface of a fairly thin sheet of water flowing 
across a smooth, nearly level, plane surface. The results given 
in part (b) were obtained by considering the flow past a cam
bered Karman-Trefftz airfoil. In both cases, the airfoil has 
travelled about one chord. There is qualitative agreement. 
Shown in part (c) is a sequence of computed results for a 
different airfoil that experiences an impulsive start followed 
by an impulsive stop. Two counter-rotating regions of con
centrated vorticity are clearly evident. These two regions are 
migrating downward. The space between these two large-scale 
regions of concentrated vorticity is nearly devoid of vorticity 
because the vorticity is being drawn toward the centers of each 
region, and the connecting vortex sheet is being stretched and 
weakened. 

Now we consider again the case of a pitching airfoil (the 
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Fig. 11 Computed wakes of a pitching airfoil: the same case as in Fig. 
6. (a) After three and one quarter cycles; (b) after four and one quarter 
cycles; (c) the disturbance-velocity field corresponding to the wake in 
(b) above. Frequency and amplitude of the motion agree with those in 
the experiment represented in Fig. 12. 

(b) 

Fig. 12 Comparison between experimental and simulated wakes: pitch
ing frequency and amplitude agree with those in Figs. 6 and 11. (a) 
Photograph of the wake behind a pitching airfoil in a water tunnel (Wilder 
et al., 1990); (b) the same as in part (b) of Fig. 11. 

same case shown in Fig. 6), where the pitch angle is given by 
Eq. (43) and k = 2.77. During each cycle two regions of 
concentrated vorticity are created. In parts (a) and (b) of Fig. 
11 the wakes are shown after three and one quarter cycles and 
four and one quarter cycles, respectively. A comparison of 
parts (a) and (b) shows that after three and one quarter cycles 
the structure of the wake has nearly reached a steady state in 
the area from the trailing edge to approximately 2.75 chords 
downstream. The circulations around regions of concentrated 
vorticity 1 and 3 are negative (counterclockwise) while those 
around regions 2 and 4 are positive. The disturbance flowfield 

Fig. 13 Computed wake behind a pitching airfoil: the pitch angle is 
given by Eq. (43) with k = ?r, and the amplitude and frequency agree 
with those in the Experiment of Booth (1987) 

Fig. 14 Computed wake behind a pitching airfoil the pitch angle is 
given by Eq. (45). The numerical result agrees with the observation in 
the experiment by Booth (1987). 

corresponding to part (b), obtained by subtracting the free-
stream velocity from the total velocity field, is shown in part 
(c). Vorticity is obvious in the regions where the vortices are 
densely packed and there is practically no evidence of vorticity 
outside these regions. The centers of the regions of concen
trated vorticity can be approximately located, and the hori
zontal spacing between two regions of the same sign of 
circulation (i.e., between 1 and 3 and between 2 and 4) is 
approximately 1.25 chords. 

Part (a) of Fig. 12 is a photograph by Wilder et al. (1990) 
of flow past a pitching airfoil in a water tunnel for the same 
reduced frequency and amplitude as in Fig. 11. Part (d) of 
Fig. 12 is the same as part (b) of Fig. 11 and is put here for 
comparison. Comparing part (a) with part (b) of Fig. 12, one 
sees that the numerical method simulates the wake structure 
very well, even in some of the finer details. The distance be
tween the centers of vortical structures of the same sign meas
ured by Wilder et al. is 1.2 to 1.4 chords, very close to the 
numerical result (about 1.25 chords). Although a dyed streak-
line between the regions of concentrated vorticity is evident, 
no experimental evidence of vorticity along the streakline was 
found (that is, abrupt changes in velocity were not perceptible), 
which is consistent with the numerical simulation. The vortex 
layer has been stretched and in the process rendered thin; 
consequently, the velocity generated by this portion of the wake 
is quite weak. It should be noticed that, for both experimental 
and numerical results, there are some small spirals on the weak 
vortex layers connecting two adjacent big regions of concen
trated vorticity. According to the numerical tests of Krasny 
(1986), the computer round-off caused those spirals, and they 
could be diminished by higher-precision arithmetic. Here the 
splitting scheme might also be responsible for causing the spi
rals and the agreement with the flow visualization might be 
fortuitous. On the other hand, one cannot exclude the pos
sibility that the numerical model accurately catches some true 
characteristics of the flowfield. 

Next the pitch angle is given by Eq. (43) and k — ir in order 
to simulate an experiment by Booth (1987), who used a pitching 
airfoil to generate wakes. In Fig .13, the wake with four regions 
of concentrated vorticity, is shown after two and one quarter 
cycles; regions 1 and 2 were generated during the first cycle 
and 3 and 4 were generated during the second. The circulations 
around regions of concentrated vorticity 1, 2, 3 and 4 are, 
respectively, r\ = 1.042, T2 = -0.929, T3 = 1.059, and I\, 
= - 1.106. We note that T,+ 1^ = 0.113, r ? + r4 = -0.047, 
and one can see that the vorticity distribution of the second 
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Fig. 15 Computed profiles of the horizontal velocity component at the 
three stations indicated in Fig. 14: As a result of the high density of 
vortices in the wake, the profiles are smooth. The profiles are computed 
by an inviscid model of the flowfield but exhibit what is often thought 
to be a viscous core. 

cycle is more nearly symmetric than that of the first cycle. It 
is expected that, if the calculation were continued, the wake 
would continue to become more nearly symmetric. Booth 
measured the velocity behind an airfoil and numerically in
tegrated his measurements to obtain the circulations around 
regions of concentrated vorticity. His results for the circula
tions, which are nondimensionalized here, are 1.12 and - 0.992. 
The numerical predictions are in good agreement with Booth's 
observations. 

Corresponding to another of Booth's experiments (1987), 
the pitch angle for one cycle of the motion is given by the 
following 

-10°cos(7r0 0.0 < / < 1.05 

"" 1 -25.1607° ( | , - 0 . 6 0 2 6 | 1 .05<f<5.0 
(45) 

where the period T = 5.0. In Fig. 14, the computed wakes are 
shown after one and a half cycles. The purpose of choosing 
6P as defined in Eq. (45) is to create relatively isolated regions 
of concentrated vorticity. They are generated by the rapid 
sinusoidal variation of 6P from - 10 to 10 deg in the first 20 
percent of the cycle. The vorticity that is generated when 6P 
linearly returns to - 10 deg during the remainder of the cycle 
is much weaker, and the corresponding portion of the wake 
does not roll up much. The vorticity generated during the first 
20 percent of the cycle is negative (counterclockwise). As in
dicated in the figure, the centers of the regions of concentrated 
vorticity are about 5 chord lengths apart; this result agrees 
quite well with Booth's experimental results. 

In Fig. 15, the horizontal components of the total (com
puted) velocity are plotted as functions of vertical position for 
the three different locations shown in Fig. 14. Because of the 
high density of blobs in the regions of concentrated vorticity, 
the computed velocity is smooth. The numerical simulation 
shows a rather concentrated vortical flow. The value of the 
nondimensional circulation for a path around the region of 
concentrated vorticity is 0.712 for the numerical solution and 
0.707 for Booth's experimental results (when a freestream speed 
of 15 ft/sec is used). Again, the agreement is quite good. 

3.2 Blade-Vortex Interaction. First the interaction of an 

Present Result 

Turbulent F1nw_ 

Ci -a.a-

•^Transonic Flow 

3.7= 

VCRTcX POSITION X 

Fig. 16 Lift coefficient for the interaction between a vortex point and 
an airfoil: The present numerical result, the result of turbulent flow was 
computed by Hsu and Wu (1986), and the result of transonic flow was 
computed by Srinivasan et al. (1986). 

airfoil with a single passing vortex point (called simply a vortex 
in this discussion) is investigated. Then the interaction between 
a stationary airfoil and the wake generated by a pitching airfoil 
is simulated. 

The quarter-chord point of the airfoil is chosen as the origin 
of the coordinate system, and the angle of attack is zero. At 
the beginning, the flow is steady. Then a single vortex with 
strength Tv = 0.2 is introduced at the position xv = -5.25 
and y„ = — 0.26 (five chords upstream from and slightly below 
the origin) and convected downstream at the local particle 
velocity. The flow becomes unsteady. The variation of the lift 
coefficient CL ( = L/(l/2)pV2„C2) with the position of the vor
tex is shown in Fig. 16. When the vortex is far from the airfoil, 
a small negative lift acts on the airfoil. As the vortex approaches 
the airfoil, the lift becomes more negative and reaches its 
maximum negative value just before the vortex reaches the 
leading edge. As the vortex passes under the airfoil, the lift 
increases, changing from negative to positive. After the vortex 
passes the trailing edge, the lift decreases gradually toward 
zero. As shown in Fig. 16, the present solution is in very good 
agreement with the attached turbulent-boundary-layer solution 
obtained by Hsu and Wu (1986) (marked Turbulent Flow in 
the figure) and with the solution of the Euler equations for 
transonic flow obtained by Srinivasan et al. (1986) (marked 
Transonic Flow). 

There have been several attempts to improve the model of 
blade-vortex interaction by having the oncoming stream con
tain a system of vortices. It appears that Hardin and Lamkin 
(1984) were the first to consider a spatial distribution of vor
ticity rather than a single vortex in the oncoming stream. Poling 
et al. (1987) extended the single-vortex model by sequentially 
releasing a series of vortex points from a fixed location up
stream. Panaras (1987) modeled a finite, vorticity-bearing re
gion by releasing a cloud of vortex points upstream from an 
airfoil. The initial deployment of the points was prescribed, 
and all had the same prescribed circulation. Lee and Smith 
(1987) also released a cloud of vortex points upstream. Poling 
et al. (1988) also considered the interaction between a cloud 
of vortex points and an airfoil. They chose a distribution of 
circulations in the initial arrangement that produced a velocity 
field similar to their experimental observations (also similar to 
the profile in Fig. 15). Renzoni and Mayle (1991) used a vortex 
cluster of vortex points resulting from a pitching flat plate, 
but they did not split the vortex points. Both Panaras (1987) 
and Poling et al. (1988) considered flow past a Joukowski 
airfoil, both used conformal mapping to obtain their results, 
Poling et al. imposed the general unsteady Kutta condition, 
but Panaras did not. Lee and Smith used a source-panel method 
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Fig. 17 Blade-vortex interaction computed by Panaras (1987) at six 
different times: The curves at the bottom show the pressure at points 
1, 2, and 3 on the airfoil surface as functions of time. 
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Fig. 19 Blade-vortex interaction computed by Poling et al. (1988) at four 
different times 
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Fig. 18 Blade-vortex interaction computed by Lee and Smith (1987): (a) 
cloud of vortex points at six different times; (b) details of the interaction 
near the leading edge while the cloud is being split 

(instead of the vorticity-panel method described here) and im
posed the general unsteady Kutta condition at the trailing edge. 

The example of blade-vortex interaction computed by Pan
aras (1987) is given in Fig. 17. The solid dots are vortex points; 
the hollow dots are simply markers to help visualize the motion. 
The cloud of vortex points is shown at six different times. The 
cloud is split by the airfoil, and the portion going along the 
upper surface arrives at the trailing edge a little before the 
portion moving along the lower surface. The plots under the 
airfoil give the pressures at three locations on the upper surface 
as functions of time. 

Some results from another example of blade-vortex inter
action computed by Lee and Smith (1987) are given in Fig. 18. 

In part (a), the cloud of vortex points is shown at six different 
times. The cloud is divided by the airfoil, and the portion 
moving along the lower surface arrives at the trailing edge 
ahead of the portion moving along the upper surface. More 
details are shown in part {b). 

Some results from the blade-vortex interaction computed by 
Poling et al. (1988) are shown in Fig. 19. Again the cluster of 
vortex points is divided by the airfoil. The wake generated at 
the trailing edge of the airfoil is also shown. In the cases shown 
in Figs. 18 and 19, it appears that vorticity moving along the 
lower surface arrives at the trailing-edge slightly ahead of the 
vorticity moving along the upper surface, in contrast with 
Panaras's results. The airfoils and the initial distributions of 
circulations are different. 

The vortex-panel/core-splitting method can also be used to 
achieve a partial numerical simulation of the BVI experiment 
conducted by Booth (1986, 1987). In the experiment, the wake 
generated by a pitching airfoil of chord length 0.75 interacts 
with a stationary airfoil of unit chord downstream. As shown 
in Fig. 20, the quarter-chord point of the pitching airfoil is at 
(0.0, 0.0), and the quarter-chord point of the stationary one 
is at (1.5625, -0.094), i.e., the horizontal distance from the 
leading edge of the stationary airfoil to the trailing edge of the 
pitching airfoil is 0.75 when both airfoils are at zero angle of 
pitch. The case where the angle of attack of the stationary 
airfoil is zero is considered here. The pitch angle of the os
cillating airfoil is given by Eq. (45), which generates a relatively 
isolated region of concentrated vorticity of circulation 0.534 
nondimensionalized by the velocity of the freestream and the 
length of the stationary airfoil. 

In Fig. 21, the two airfoils with their wakes and the pressure 
distribution on the stationary one are shown at different times. 
In part (a) of Fig. 22, the history of the lift coefficient CL is 
shown. At the beginning, there is positive (upward) lift acting 
on the stationary airfoil because the pitching airfoil upstream 
is at a negative angle of attack and deflects the oncoming stream 
upward. For this steady state, the airfoils and the calculated 
pressure distribution on the stationary one are shown in part 
(a) of Fig. 21. The lift reaches its maximum value at t = 1.37 
just before the strong concentrated vorticity generated in the 
first 20 percent of the cycle reaches the leading edge of the 
stationary airfoil as shown in part (b) of Fig. 21, where the 
wake of the pitching airfoil is plotted with and without the 
stationary airfoil present. In part (c) of Fig. 21, the wakes and 
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Fig. 21 Pressure distributions on the stationary airfoil during blade-
vortex interaction: the pitch angle is given by Eq. (45). (a) Steady state 
before the motion starts; (b) at time f = 1.37; (c) at time t = 2; (d) at 
time f = 3; (e) at time f = 4.5. The inserts show both the airfoils and 
their wakes in the upper view, and only the pitching airfoil and its wake 
in the lower view. The wake can be seen enveloping the stationary airfoil. 

the pressure distribution are shown at t = 2. From the view 
of the wake without the stationary airfoil present, one can see 
that the vortex sheet generated by the pitching airfoil is en
veloping the stationary airfoil and is stretching. The more this 
vortex sheet is stretched, the weaker its strength is. The pressure 
distribution on the upper surface is very rough in the region 
close to the strong vorticity. 

For the unsteady problem evaluating the pressure through 
Eq. (36) involves the relative surface velocity 7 and both its 
spatial and temporal derivatives. When the wake is close to 
the surface, the gradient of the surface velocity can be very 
large. Maskew (1980) suggested that additional subpanels be 
put on the surface to capture the resolution of the velocity, 
but no subpanels are added in the present model. As a result, 
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Fig. 22 Lift coefficient as a function of time: (a) computed by the method 
described here; (b) computed by Lee and Smith (1987); (c) computed by 
Poling et ai. (1987); (d) measured by Booth (1986) 

the pressure distribution is rough; this roughness moves to
wards the trailing edge as the concentrated vorticity convects. 
In part (d) of Fig. 21, the pressure and the wakes are shown 
at time t = 3. The pressure distribution is very smooth. The 
very weak vortex sheet (as the result of stretching) covers almost 
the entire airfoil except a small portion near the lower trailing 
edge. In part (e) of Fig. 21, the pressure and the wakes are 
shown at time / = 4.5. The sharp rise in the pressure on the 
upper surface is caused by the (weak) clockwise vorticity in 
the wake coming very close to the surface. 

In Fig. 22, the history of the lift coefficient is shown for 
several different studies. The plot of CL in part (a) was obtained 
by the numerical scheme discussed here for the same conditions 
used to make Fig. 21. In part (b), a sample of the result 
computed by Lee and Smith (1987) is shown; in part (c), the 
result computed by Poling et al. (1987) is given; and in part 
(d), the experimental result of Booth (1986) is presented. The 
results in parts (b) and (c) were computed by releasing a cloud 
of vortices upstream. The one in part (a) is the numerical 
simulation of Booth's experiment in part (d), the one in part 
(c) was computed with the conditions chosen in such a way to 
imitate the experiment in part (d). 

In the case (computed by Lee and Smith) shown in part (b) 
of Fig. 22, the direction of the vorticity is opposite to that in 

the other cases shown in parts («), (c), and (d) of Fig. 22. 
When the sign is changed the result of Lee and Smith is similar 
to the result obtained by the vorticity-panel method shown in 
part (a). The jagged regions of the curve in part (a) of Fig. 22 
correspond to the times when the wake actually brushes along 
the surface of the stationary airfoil. Apparently, the re-dis
tribution of panels nearly eliminated this feature from the 
results of Lee and Smith. The mean-value curve (i.e., the curve 
faired through the jagged regions) for the present vorticity-
panel results converged rapidly as the number of panels was 
increased and the time step is decreased, which is typical of 
all vorticity-panel results. Point A in part (a) of Fig. 22, cor
responds to the end of the sinusoidal portion of the cycle 
defined by Eq. (45). 

The result of Poling et al. (1987) shown in part (c) of Fig. 
22 has the best qualitative agreement with the experimental 
result of Booth. Booth gives only the increment in lift in part 
(d) of Fig. 22; the lift created by the initial negative angle of 
attack of the forward airfoil has been subtracted. 

The difference between Booth's experiment and the nu
merical simulations is most likely due to the separation caused 
by the strong interaction. Separation can occur when strong 
vorticity is close to the airfoil in some experiments. Telionis 
and co-workers (1990) have observed a significant separation 
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bubble that moves along the surface with the passing region 
of concentrated vorticity. In Booth's experiment, the Reynolds 
number was first given as 85,300 (Booth, 1986) based on the 
flow speed 20 ft/s. But later he found that the mean flow speed 
was about 15 ft/s when the flow reached the stationary airfoil 
(Booth, 1987). Then the Reynolds number should be 63,975. 
At this Reynolds number, the boundary layer was likely lam
inar when the separation occurred. The calculation of BVI for 
viscous flow by Hsu and Wu (1986) showed that when sepa
ration occurs the lift differs considerably from that corre
sponding to attached flow. The numerical results presented 
here are based on the assumption that the flow is always at
tached. 

4 Summary 
A vorticity-panel method coupled with vortex dynamics has 

been reviewed. The method predicts the rate at which vorticity 
is shed into the wake generated by unsteady flow over an airfoil 
and the subsequent development of the wake. The numerical 
solutions are in good agreement with the experimental results 
and support the argument that the evolution of the wake within 
a certain distance behind the trailing edge is almost entirely 
controlled by an inviscid mechanism. 

The boundary layer adjoining the surface of the airfoil is 
simulated by a vortex sheet, and the wake that adjoins the 
trailing edge is simulated by a system of vortex blobs (a vortex 
blob is in essence a classical vortex point with the singularity 
removed). By requiring the pressures along the upper and lower 
surfaces of the airfoil to approach the same value at the trailing 
edge and the total vorticity to be conserved, one can predict 
the rate at which the vorticity is shed at the trailing edge into 
the wake. 

As the discrete vortices in the wake begin to separate they 
are split in such a way that maintains the total circulation 
exactly and the spatial distribution approximately. The com
putations clearly reveal a coiling or wrapping process that, 
qualitatively at least, is in good agreement with flow visual
izations done in both water and wind tunnels. Vorticity in the 
wake is drawn into relatively isolated regions called regions of 
concentrated vorticity. The velocity distributions through such 
regions appear to have a viscous core, but the flowfield is 
developed entirely by an inviscid model. The process resembles 
diffusion, but happens much too rapidly to be explained by 
viscous effects. 

Numerical experiments show that the results obtained from 
the method described here tend to converge as the time step 
decreases and the number of the elements on the surface of 
the airfoil increases. Moreover, the general unsteady algorithm 
produces the correct steady-state solution when it is applied 
to an airfoil that translates at constant velocity following an 
impulsive start. 

An inviscid panel method coupled with vortex dynamics for 
numerically simulating the flowfield has potential as a model 
of blade-vortex interactions. 

The present perspective of unsteady, incompressible, at
tached flow over airfoils is by no means exhaustive; it does 
provide several points where one can begin a more thorough 
study. 
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Comparison of the Triple-Deck 
Theory, Interactive Boundary 
Layer Method, and Navier-Stokes 
Computation for Marginal 
Separation 
The steady two-dimensional marginal separation of an incompressible boundary 
layer flow within a channel was solved independently by three different methods: 
the triple-deck method of marginal separation, the interactive boundary layer method, 
and the full Navier-Stokes computation. From comparison of the results between 
these three methods, the accuracy and appropriateness of each method was deter
mined. The critical condition beyond which the steady marginal separation solution 
of triple-deck method does not exist was related to a physical phenomenon in which 
the separation bubble becomes unsteady. Factors such as Reynolds number and 
pressure gradient distribution which might influence the accuracy of the marginal 
separation solution were also investigated. 

1 Introduction 
For a high Reynolds number flow over a thin airfoil, a region 

of separated flow can appear within the adverse pressure gra
dient laminar boundary layer near the leading edge. The sep
arated flow will form a steady closed separation bubble if the 
adverse pressure gradient is relatively weak. It is important in 
many practical situations to predict the inception and the struc
ture of the separation bubble since the development of bound
ary layer separation may lead to dynamic stall. It is well-known 
that both analytical (Brown and Stewartson, 1969) and nu
merical methods (Werle and Davis, 1972) encounter a Gold
stein-type singularity at the separation point when the boundary 
layer equations are solved with a prescribed pressure gradient. 
Although such difficulties can be avoided by solving the full 
Navier-Stokes equations (Briley, 1971), computational require
ments often prohibit its use as a powerful design tool. 

Since the boundary layer assumptions are still valid when 
studying thin separation bubbles, many numerical schemes 
have been developed to avoid the singularity by modifying the 
classical boundary layer computation to include the pressure 
gradient as part of the solution. The typical triple-deck method 
(Stewartson, 1974; Smith, 1982) and the interactive boundary 
layer (IBL) method (Kwon and Pletcher, 1979; Veldman, 1981) 
both suggest that the adjustment of the pressure gradient by 
the displacement thickness can avoid the singularity. Still, sev
eral iterations between the inviscid flow and the boundary layer 
computation are required to obtain compatible solutions and 
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may reduce the computational speed. We, therefore, seek a 
more efficient technique to predict such thin small bubbles. 

Stewartson et al. (1982) applied the triple-deck theory to 
solve the laminar marginal separation flow, i.e., the situation 
where the skin friction just vanishes but immediately recovers. 
For marginal separation the triple-deck scalings were different 
than those used in the typical triple-deck analysis. Considering 
the local solution of the Navier-Stokes equations as Re^oo, 
the wall skin friction was expressed in terms of the local pres
sure gradient, the velocity profile at the marginal separation, 
and a constant T resulting from an integration in the solution 
procedure. In the study, they determined that T is related to 
a parameter which will slightly increase the pressure gradient 
beyond marginal separation. The greatest benefit of this an
alytical method is that there is no iteration needed in order to 
obtain the skin friction. 

After the Stewartson et al. study, the triple-deck method for 
marginal separation has been applied to study the quasi-two-
dimensional (Brown, 1985), three-dimensional (Duck, 1989) 
and unsteady three-dimensional (Duck, 1990) boundary layer 
flow. However, all these works are qualitative. 
. The present work implements the triple-deck method based 
on the Stewartson et al. (1982) study to investigate a small 
separation bubble of a steady incompressible laminar flow. 
Previous studies all considered a triple-deck analysis of mar
ginal separation for infinite Reynolds number. However, in 
practice we would like to study marginal separation at a finite 
Reynolds number. Therefore, the primary objective of the 
present work is to investigate the appropriateness of the triple-
deck method of marginal separation in practical problems. To 
achieve this objective three different methods: the triple-deck 
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Fig. 1 Geometry for computing laminar boundary layer separation 
bubbles 

method of marginal separation, the IBL method, and the full 
Navier-Stokes computation are applied to solve the same flow 
field independently at different Reynolds numbers. It was found 
that the full Navier-Stokes computation did not yield a stable 
solution of laminar flow at a high Reynolds number although 
the IBL method and the triple-deck method still performed 
well. Therefore, comparison between the IBL method and the 
Navier-Stokes computation is performed only at a low Reyn
olds number to demonstrate the accuracy of the IBL method 
in practical problems. Comparison is performed between the 
triple-deck method of marginal separation and IBL method 
for all Reynolds numbers to demonstrate the theoretical ac
curacy of the triple-deck method. 

The comparison between the IBL method and the full Na
vier-Stokes computation was first made by Briley and Mc
Donald (1975). Although they showed the results between these 
two methods to be in good agreement, the required displace
ment thickness for the IBL computation was not evaluated 
from the global viscous-inviscid interaction. Instead, the dis
placement thickness from the Navier-Stokes computation was 
applied to the IBL computation. The IBL method therefore 
relied on the Navier-Stokes computation result and was not 
computed independently. When Cebeci and Stewartson (1983) 

applied the IBL method to solve Howarth's flow independ
ently, they did not obtain a favorable comparison with the 
results of Briley (1971). Discrepancy between the results was 
attributed to the upper boundary condition specified by Briley. 
Cebeci and Stewartson suggested that the upper boundary of 
Briley was too close to boundary layer edge for a finite Reyn
olds number and the free stream velocity should be disturbed 
by the viscous-inviscid interaction. This hypothesis was never 
verified by modifying the free-stream boundary condition of 
the Navier-Stokes computation and showing favorable com
parison between the results of the two methods. Since the free 
stream boundary condition applied to the Navier-Stokes com
putation will influence the calculation of the displacement 
thickness, the second objective of the present work is to find 
the boundary condition which in effect describes an external 
flow. In this way the IBL method and the full Navier-Stokes 
computation can be compared at the same flow conditions. 

For easy comparison of the results from the three different 
methods, a very simple water channel geometry consisting of 
a test wall and a control wall is considered (see Fig. 1). A 
laminar boundary layer develops on the test wall in the presence 
of an adverse pressure gradient produced by a suction port on 
the control wall. By adjusting the suction strength S one can 
create marginal separation conditions. 

2 The Methods of Solution 
In the present study three different methods are used to solve 

the same flow field independently. The classical boundary layer 
calculation with a prescribed pressure gradient is first applied 
to determine the conditions of marginal separation. The triple-
deck method then is used to calculate the skin friction in the 
neighborhood of the separation. The composite solution of 
skin friction will be made from the solution of the classical 
boundary layer calculation and the triple-deck method. Sec
ond, the IBL method is used in the region where the interaction 
between boundary layer and inviscid flow is believed to be 
important. Finally, the computation of the Navier-Stokes 
equations is used as a third method to verify the solution of 
skin friction near the separation point. 
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reduced skin friction obtained from bound
ary layer equations 
reduced skin friction obtained from triple-
deck with interaction 
reduced skin friction obtained from triple-
deck without interaction 

03 

X 

Subscripts 
Blasius 

c 
e 

m 
max 
top 

00 

Superscript 

= 

= 
= 
= 
= 
= 
= 
= 

over-relaxation paran 
decaying factor 

Blasius solution 
critical condition 
condition at the edge 
condition at marginal 
maximum value 

leter 

of boundary layer 
separation 

condition at control wall 
condition at inlet 

n = iteration number 
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The Reynolds number used in present study is defined as 

Re, (1) 

where L* is the characteristic length which is equal to the 
streamwise start location of the suction port. All variables are 
nondimensionalized by the quantities which appear in the 
Reynolds number. Dimensional variables are noted by a starred 
superscript while the superscript is absent from all nondimen
sional quantities. 

Since comparison between the methods is performed using 
the skin friction, we define the reduced skin friction T and the 
skin friction coefficient as 

1 du 
: Rei / 2 dy 

Cf= 
y = 0 

_2r_ 

Re!72" 
(2) 

2.1 Triple-Deck Method 

Classical Boundary Layer Calculation. Before applying the 
triple-deck method of marginal separation, the classical bound
ary layer calculation with a prescribed pressure gradient is first 
used to determine the conditions of marginal separation. Such 
a pressure gradient is determined by the inviscid flow 

dp due 

dx e dx' 
(3) 

From the potential flow analysis, the inviscid surface velocity 
ue for the present geometry is given by (see Pauley et al., 1988) 

cosh 

ue(x) •• 
S 
2) (X2-X1)T 

In 

(X-X2)TT 

cosh 
( X - * i ) 7 T 

(4) 

where X\ and x2 are the start and end location of the suction 
port, respectively, and S is the suction strength defined as the 
fraction of the through-flow which is removed through the 
suction port. After transforming the boundary layer equations 
in terms of Levy-Lee variables, the Keller Box scheme (1978) 
is applied to solve the governing equations. 

Noninteracting Flow Analysis. To apply the asymptotic 
theory, the coordinate within the boundary layer is defined as 
x=xs + X and y = Re^ 1/2 Y, where xs is the marginal separation 
point obtained from a classical boundary layer calculation with 
a prescribed pressure gradient. Also, the velocities are rescaled 
as u(x, y) = U(X, Y) and v(x, y) = Re£U2V(X, Y). 

Without including interaction effects, the velocities and pres
sure gradient are expanded as 

U(X, Y) = UQ(Y) + U1( Y)X+ U2 (Y)X2 - ,*£/„' (y)X 

+ ixVo (Y)X2 + X/l^Uo (Y)X2 +••• (5a) 

V(X, Y) = V0(Y) + V1(Y)X+ Mt/0(Y) 

-2IXVV(Y)X-1L
2UUY)X+--- (5b) 

dp(X) 
dX 

•• PQ + PiX+ P2X
2 + P3X

3 + • (5c) 

where n is an integral constant to be determined from the no-
slip condition. U0(Y) is the velocity profile at the marginal 
separation point which can be expanded as a power series in 
Y. Other coefficients in Eqs. (5a) and (5b) can also be ex
panded as a power series in Y. Following Goldstein (1948), 
through substituting these expansions into the boundary layer 
equations and equating terms of the same order, the velocity 
profile at the marginal separation point can be determined as 

U0(Y) = l-a2Y
2 + ̂ a6Y

6 + ̂ aiY
i + O(Yw)., (6) 

where 

a2 = P0 a6 = 2PaPl (7) 

Also the reduced skin friction near the separation without 
interaction can be obtained as a series expansion in X. 

-lia2X- • — iiX + 
2a2 

(8) 

When only O(X) is retained and the no-slip condition is ap
plied to Eq. (5a), the reduced skin friction at the wall becomes 

1/2 

X. (9) 
a2 

It can be shown that T„ is consistent with 77,, the reduced skin 
friction obtained from the classical boundary layer calculation 
at marginal separation, as X— 0 ± . This implies as can be de
termined using the upstream boundary layer parameters a2 and 
Tb-

Interacting Flow Analysis. A significant interaction be
tween the inviscid flow and the boundary layer arises near the 
separation region. As in Stewartson et al. (1982), the appro
priate streamwise scale for the interaction region centered 
at X=0 is X=0(Re~ws). In the normal direction the flow 
is divided into three decks: F = 0 ( 1 ) for the main deck, 
y=0(Re 3 / l 0 ) for the upper deck, and y=0(Re" 1 / 2 0 ) for the 
lower deck. Following the work of Stewartson et al., the method 
of matched asymptotics is used between the lower deck and 
main deck and between the main deck and upper deck. A 
rescaled nonlinear integral equation which describes the skin 
friction in the neighborhood of the separation region is ob
tained as 

A2(X). -X2-T + 1; A"(Xx)dX 
(X-X)l/2' 

(10) 

where A and X are the rescaled variables of A and X. The 
arbitrary constant Y represents the departure of the disturbance 
parameter from marginal separation. The reduced skin friction 
with interaction is given as 

Ti = aA(X). (11) 

where 

4 ^ 
27 

(-l/4)!«| /2t/0
2(<") 

„13/10> 
02 23/2(l/4)!Re1/2 (12) 

Composite Solution of Skin Friction. For practical appli
cation and easy comparison with the results of the IBL, a 
composite solution is constructed using the solutions of the 
triple-deck method and the classical boundary calculation at 
marginal separation. The composite solution of skin friction 
T is obtained by 

T=Tb+(Ti-Tn) (13) 

where TJ is obtained from classical boundary layer calculation 
while r„ and T, are obtained from Eqs. (9) and (11), respectively. 

2.2 Interactive Boundary Layer Method. In the classical 
boundary layer calculation the pressure gradient is prescribed 
a priori but in the IBL method the pressure gradient reflects 
the displacement effect of the viscous flow in the interaction 
region. Therefore, the actual inviscid surface velocity including 
the displacement thickness effect is given as 

,(x) = ue(x) + 
7rJ_ 

d(ue(x)8{) dx 
(14) 

dx (x-x) 
where 61 is the nondimensional displacement thickness and 
ue(x) is calculated from Eq. (4). In the present study the "semi-
inverse method" is applied, i.e., the boundary layer is cal
culated inversely but the inviscid flow is calculated directly 
(Veldman, 1981). 

The numerical procedure of the IBL method starts from the 
classical boundary layer calculation. The inverse mode is first 
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applied at the streamwise location xb which is chosen where 
the displacement effect is believed to be negligible. The same 
condition is considered when choosing the end point xe for the 
inverse calculation. The classical boundary calculation is per
formed only once and the solution of the velocity profile is 
retained at xb to serve as the initial boundary condition for 
the inverse calculation. The Mechul function scheme (Cebeci 
and Keller, 1973) is applied for the inverse calculation. 

An initial prescribed 5i is needed to start the inverse cal
culation. In the present study the Blasius solution is used as 
the initial guess. The FLARE (Reyhner and Flugge-Lotz, 1968) 
approximation, in which the momentum term udu/dx is ne
glected wherever w<0, is applied when the inverse calculation 
is carried through the separation region. From the inverse 
calculation the inviscid surface velocity ue?BL can be deter
mined. 

Subsequently, Eq. (14) is used to evaluate the «<.,INV directly 
with the same b\ prescribed for the inverse calculation. In order 
to evaluate the Hilbert integral of Eq. (14), the limited region, 
xb<x<xe, is used. 

An iterative cycle is completed when the displacement thick
ness is updated by the successive over-relaxation (SOR) for
mula, 

57+1 = (l-w)5? + w 5, (15) 

where co is the relaxation parameter. o>=1.5 is used in the 
present study to accelerate the convergence. The convergence 
criterion of the global iterative process is taken as 

maxisy+1(*)-5i(x)l<10-4. (16) 
2.3 Navier-Stokes Computation. In the present study the 

incompressible unsteady Navier-Stokes equations are solved 
by a fractional-step method developed by Kim and Moin (1985). 
Although the steady-state solution is of interest in the current 
study, the time-dependent approach has been solved for three 
reasons. First, the effect of free stream oscillations on a sep
arated flow can be studied using the present method without 
any modification. Second, for high Reynolds number flow the 
convergence rate of a steady-state iterative procedure and a 
time-dependent approach are similar. Finally, physical insta
bility associated with eventual turbulent transition is easier to 
distinguish in the time-dependent approach. 

The second-order-implicit Crank-Nicolson method is used 
for the viscous terms while the pressure and the convective 
terms are evaluated through the use of the second-order-explicit 
Adams-Bashforth method. All spatial derivatives are approx
imated by second-order central differencing on a staggered 
grid. This leads to second order accuracy both in time and 
space. 

In the current study a rectangular computational domain is 
used. At the inlet of the computational domain, the velocity 
profiles are specified by the Blasius boundary layer solution. 
The no-slip boundary condition w = 0 and nontranspiration 
condition v = 0 are used on the lower wall. On the upper wall 
the no-stress boundary condition du/dy = 0 is applied for the 
streamwise boundary condition. For the transverse boundary 
condition, except in the suction port region, several transverse 
velocity distributions will be tested in order to eliminate the 
internal flow effect. The convective equation bu,/St + cdw,/ 
dx=0 which was recommended by Pauley et al. (1988) for 
unsteady boundary layer flow is applied to exit boundary con
dition in the present study. The average exit velocity is used 
for the convective velocity c. 

The computational domain is set so that the separation so
lution is independent of inlet and outlet boundary effect. The 
height of the channel is set such that the boundary layer never 
occupies more than 10% of the height of the channel to reduce 
the internal flow effect. All computations contain 256 evenly 
spaced grid nodes in the streamwise direction and 128 stretched 

0.25 
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1- 0.15 

O.IO 

0.05 

S=0.0494 
S-0.0493 
S=0.0495 
S=0.0496 

0.96 0.98 l.OO 1.02 1.04 1.06 1.08 1.10 1.12 1,14 
a; 

Fig. 2 The solution ^ of classical boundary layer calculation for various 
suction strengths near S=Sm for W= 0.0621 

grid nodes in the normal direction. Half of the grid points are 
clustered in the boundary layer on the test wall. The grid-
dependence of the solution was tested by doubling the number 
of points in the streamwise or normal directions; for both cases 
the changes in the velocity were less than 0.5 percent. 

3 Results and Discussion 

3.1 Marginal Separation. By adjusting the suction 
strength S, one could determine the marginal separation con
ditions from the classical boundary layer calculation. However, 
due to numerical resolution it was difficult to find an exact 
value of the suction strength which caused the skin friction to 
vanish to zero at one point and then recover immediately. 
Therefore, the marginal separation condition was defined when 
S-Sm while the classical boundary layer calculation began to 
predict separation as S = Sm + e. The e was chosen to be an 
appropriately small positive value so that e « R e i 2 / 5 . The 
marginal separation point was then defined as the point at 
which the skin friction had the minimum value as S = S,„. Figure 
2 shows that the reduced skin friction rb decreases to a min
imum point then recovers immediately at the marginal sepa
ration condition as S=Sm but leads to a singularity when S> Sm. 

After the marginal separation conditions were determined, 
the coefficients a2 and ct6 of the series expansion of the marginal 
separation profile then were obtained by fitting the curve of 
the pressure gradient near the marginal separation point. a8 
was chosen so that Eq. (9) accurately matched the slope of rb 
as^T-0± . 

3.2 Comparison Between IBL Method and Triple-Deck 
Method. In_ Stewartson et al. (1982), it was found that no 
solution of A existed for Eq. (10) when Y was larger than a 
critical value Tc and there were two or even four solutions when 
0<T<r c . Further investigation of these nonunique solutions 
was made by Brown and Stewartson (1983). However, only 
the upper branch solution is consistent with the physical phe
nomenon that the minimum skin friction decreases monoton-
ically when the adverse pressure gradient is increased. 
Therefore, all composite solutions of skin friction from the 
triple-deck method were carried out using the upper branch 
solutions. 

All computations of the IBL and the triple-deck methods 
were carried out for ReL= 1.21 X 105, 1.84X106, 1.84xl08. 
Two different suction port widths, W= 0.0621 and 0.621, were 
tested with the same suction port start location. Figure 3 shows 
the comparison of reduced skin friction from the IBL and the 
composite solutions at the marginal separation conditions for 
different ReL and W= 0.0621. It is noted that although the 
classical boundary layer calculation predicts marginal sepa
ration, the elliptic nature of the flow described by the triple-
deck and IBL methods delays separation. To produce a sep
arated flow the adverse pressure gradient must be increased 
beyond the marginal separation conditions. This comparison 
also shows that a higher Re£ leads to a more favorable com
parison between the triple-deck and IBL results. However, the 
Reynolds number range which results in a favorable compar-
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Fig. 3 Comparison of ^ from the IBL method and the triple-deck method 
at marginal condition for three different ReL and W= 0.0621 

Fig. 4 Comparison of T from the IBL method and the triple-deck method 
at marginal condition for Re,. = 1.21 x 10s and W= 0.621 

Fig. 5 Comparison of r from the IBL method and the triple-deck method 
for S=Sm and S= Sc at ReL = 1.8405 x 108 and W= 0.0621 

ison between the triple-deck and IBL methods is far above the 
conditions which produce a laminar boundary layer flow in 
the present geometry. 

The influence of suction port width can be noted by com
paring Figs. 3(a) and 4 where Fig. 4 shows the results obtained 
at W= 0.621. It is seen that the wider suction port also leads 
to a more favorable comparison when computations were car
ried at the same Re^ Since the narrow suction port creates a 
more severe pressure gradient, it is concluded that a more 
gradual pressure gradient improves the solution of the triple-
deck method. In fact, from Eqs. (8) and (9) one also can justify 
this conclusion. Equation (9) was obtained when higher order 
terms in Eq. (8) were neglected. This implies that 

Table 1 
cases 

Summary of Sc and Reynolds numbers for different 

W= 0.0621 

Rez. ReLp 

1.21x10' 8.37 xlO3 

1.84X106 1.29x10' 
1.84 x10 s 1.29x10' 

Sc 

0.094 
0.065 
0.053 

W= 0.621 

Re t R % 

1.21x10' 1.95 xlO4 

1.84X106 2.98x10' 
1.84X108 2 .98x10' 

Sc 

0.100 
0.080 
0.069 

2a2 
(17) 

must be satisfied in order to obtain an accurate solution. Equa
tion (17) can be rewritten as 

P0»P{X. (18) 
Since X~ 0(Re~l/5), in order to satisfy Eq. (18) the Reynolds 
number must be sufficiently large or the slope of the pressure 
gradient must be gradual near the marginal separation point. 

However, if an appropriate characteristic length is chosen, 
then a criterion only dependent on Reynolds number will be 
obtained. In order to describe the strength of the pressure 
gradient, the characteristic length is defined as 

Ap 
L" (dp/dx)mm 

where Ap is the pressure difference across the suction port, 
(dp/dx)max is the maximum slope determined from Eqs. (3) 
and (4) at the marginal separation condition S = Sm. When the 
Reynolds number is based on the pressure gradient length, it 
is seen that the discrepancy between the IBL method and the 
triple-deck method decreases as the Reynolds number in
creases. Obviously, ReLp is more appropriate to provide an 
accuracy criterion for the triple-deck method. The values of 
ReLp for the different cases tested are listed in Table 1. 

Another noteworthy feature is the comparison of the critical 
condition. Stewartson et al. (1982) commented that the solu
tions of the fundamental equation of marginal separation cease 
to exist when r > r c , where r c = 2.75. For the IBL calculation, 
a convergent solution was also unable to be obtained when the 
suction strength was larger than a critical value. Figure 5 com
pares the solutions of skin friction between these two methods 
at the marginal and critical condition. The comparison shows 
that the solutions agree very well when the Reynolds number 
is sufficiently large. This critical condition will be further com
pared with the solutions of the Navier-Stokes computation and 
related to a physical phenomenon. The results of critical suc
tion strength Sc for different Reynolds numbers and suction 
port widths are summarized in Table 1. 

3.3 Comparison Between IBL Method and Navier-Stokes 
Computation. The comparison between the IBL method and 
the full Navier-Stokes computation was only conducted for 
Re/, = 1.21 X 105 to verify the IBL results in practical problems. 
Since the effect of withdrawing flow from the suction port is 
to reduce the transition Reynolds number, the computational 
results showed that a stable laminar flow solution could be 
obtained only at the lowest Reynolds number examined in the 
present study. 

When comparing these two methods, a difficulty was en
countered in specifying the upper wall boundary condition for 
the Navier-Stokes computation. This difficulty is similar to 
that discussed in Cebeci and Stewartson (1983) in which the 
IBL method was compared to the Navier-Stokes computation 
of Briley (1971). In Briley's study the upper boundary condition 
at y=ye was specified by the potential flow. The viscous-in-
viscid interaction can be constrained by positioning the edge 
of the computational domain too close to the outer edge of 
the boundary layer. Apparently, the upper boundary condition 
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Fig. 6 Comparison of Ch !>', Cp from IBL method and Navier-Stokes 
computations with nontranspiration wall for various S (S = 0.0494,0.060, 
0.070, 0.080, 0.090) and W= 0.0621 

caused the external flow condition of Briley to be different 
than that of Cebeci and Stewartson and resulted in a different 
flow field solution. 

In the present study, the viscous-inviscid interaction was not 
constrained severely since the upper boundary was set much 
farther away from the outer edge of the boundary layer. How
ever, a discrepancy between the IBL method and Navier-Stokes 
computation was still observed when the nontranspiration up
per wall was applied to the Navier-Stokes computation. This 
discrepancy was caused by the internal flow effect, i.e., the 
flow velocity was accelerated due to the boundary layer dis
placement thickness, since the IBL method applied here ac
tually solved an external flow. The discrepancy between the 
results of these two methods due to the internal flow effect is 
demonstrated in Fig. 6. It is seen that the dimensional dis
placement thickness 8* and the pressure coefficient Cp of the 
Navier-Stokes computation is smaller than those of the IBL 
method. Obviously, the nontranspiration wall had confined 
the boundary layer development and accelerated the flow ve
locity so that separation was delayed as the suction strength 
was increased. In order to obtain the same free-stream velocity, 
which was applied to the IBL calculation, the internal flow 
effect must be eliminated. A normal velocity distribution was 
applied along the upper wall, except in the suction port region, 
to eliminate the internal flow effect. Since the normal velocity 
was not applied in the suction port, a wide suction port will 
influence the accuracy of the results. Thus, only the narrow 
suction port was considered here. 

Since the internal flow effect is attributed to the boundary 
layer development and the significant inviscid-viscous inter
action due to the separation bubble, the normal velocity dis
tribution must reflect these two effects. However, the inviscid-
viscous interaction due to the separation bubble will decay far 
away from the boundary layer edge. Therefore, the normal 
velocity of the upper wall was specified by 

f top = ^Blasius + A ( f e - ffllasius ) ( 2 0 ) 

where feiasius obtained from Blasius solution reflects the bound-

0.00 
0.80 1.20 1.40 1.60 1.80 

Fig. 7 Comparison of Ch l>', Cp from IBL method and Navier-Stokes 
computations with transpiration wall for various S (S = 0.0494, 0.060, 
0.070, 0.080, 0.085) and W= 0.0621 

ary layer development on a flat plate while X (i>e - yBiasius) re
flects the induced transpiration velocity due to the separation 
bubble. Since ve is the normal velocity which was measured at 
the boundary layer edge, Eq. (20) was updated at every time 
step in the Navier-Stokes computation. X is the decaying factor 
which can be determined from a potential flow analysis which 
considers the flow outside the boundary layer to be inviscid. 
The inviscid flow over a hump due to the increased displace
ment thickness of the separation bubble was determined by 
selecting the appropriate streamline produced by the inviscid 
flow over a cylinder in a free stream. The upper wall deflection 
streamline generated by the inviscid hump flow produced a 
decaying factor of about 0.5. Figure 7 shows that the results 
of the IBL method and the Navier-Stokes computation are in 
very good agreement when Eq. (20) with A = 0.5 was applied 
to the Navier-Stokes computation. Even when the oscillations 
of the skin friction curve occur, the mean skin friction distri
bution still matches the solution of the IBL computation. 

Comparison of the critical condition between the IBL method 
and the Navier-Stokes computation was conducted in order to 
establish the physical significance of the critical suction strength 
found in Section 3.2. In the Navier-Stokes computation the 
boundary layer became unstable near the reattachment point 
when separation occurred at high suction strength and the 
instantaneous skin friction curve formed oscillations near the 
reattachment point. The oscillations propagated downstream 
as "waves" and passed through the computational domain. 
Following Pauley et al. (1990), the separation bubble was clas
sified as steady when the oscillations of the skin friction curve 

• did not pass through zero skin friction condition. For the 
Navier-Stokes computation the oscillations of the skin friction 
curve passed through the zero line at the critical value of 
Sc=0.09. This situation was related to the onset of vortex 
shedding at which the separation bubble becomes unsteady in 
Pauley et al. From Table 1, the critical value at which the IBL 
method was unable to converge is ^ = 0.094. From the fa
vorable comparison of Sc obtained using the Navier-Stokes 
and IBL methods, it is concluded that the critical value of T 
corresponds to the onset of vortex shedding. 
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4 Conclusions 
The present study compared the results of the triple-deck 

method of marginal separation and the IBL method to dem
onstrate the accuracy of the triple-deck method for marginal 
separation. This comparison showed that the ReL range where 
the triple-deck method can accurately predict the marginal 
separation is above the laminar boundary layer flow conditions 
for the present geometry. However, the Reynolds number based 
on the pressure gradient length gives a more appropriate cri
terion to describe the accuracy of the triple-deck method of 
marginal separation. A geometry which can generate a suffi
ciently gradual adverse pressure gradient may be sought to 
improve the prediction of the triple-deck method for marginal 
separation at Reynolds numbers which produce laminar flow. 

The Navier-Stokes computation was carried out at a laminar 
Reynolds number to verify the accuracy of the IBL method in 
practical problems. The comparison between these two meth
ods indicates that the internal flow effect in the present ge
ometry alters the marginal separation solution. Once the 
internal flow effect was eliminated, a good agreement of so
lutions between these two methods was obtained. 

From these two different comparisons the critical value of 
T involved in the fundamental equation of marginal separation 
is related to the critical value of suction strength beyond which 
the separation bubble becomes unsteady. 

Among these three methods studied, the IBL method is the 
most suitable method for solving a flow with a small separation 
bubble since it accurately determines the boundary layer sep
aration solution at low Reynolds number and requires less 
programming efforts and CPU time than the Navier-Stokes 
computation. 
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Separated-Reattaching Flow Over 
a Backstep With Uniform Normal 
Mass Bleed 
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The effect of normal mass bleed into the separated-reattaching flow behind a back
ward-facing step has been experimentally investigated. Results ofLDA measurements 
showed that normal mass bleed suppressed the reverse horizontal velocity, the reverse 
flow rate, turbulence intensity, and Reynolds shear stress within the whole recir
culating zone. An analysis of the distributions of vertical velocity and turbulence 
intensity indicates that the interaction between the injected fluid and the main stream 
began at 0.4 step height and became significant after 0.8 step height behind the 
backstep. 

1 Introduction 
The air stream over a backward-facing step produces a sep

arated flow containing a recirculation zone and a shear layer. 
Such a flow pattern is intimately related to the performance 
of various devices such as diffusers, airfoils, and combustors. 
Although there have been many investigations of the flow field 
behind a backward-facing step, the detailed mechanism of 
mixing in such a flow, especially within the recirculation zone, 
was not thoroughly explored. The reattachment length and 
distribution of mean velocity and turbulent properties of such 
flows without mass addition have been the primary focus of 
previous research. Five factors influencing the reattachment 
length were summarized by Eaton and Johnston (1981). Vary
ing the upstream flow Isomoto and Honami (1989) discovered 
that a significant parameter governing the reattachment length 
is the turbulence intensity in the boundary layer at the sepa
ration point. The maximum turbulence intensity in the bound
ary layer was found to be inversely proportional to the 
reattachment length. The reverse flow rate in the recirculation 
zone was compared with the flow rate of the redeveloping 
boundary layer by Etheridge and Kemp (1978), who estimated 
that one sixth of the fluid present in the shear layer was rolled 
into the recirculation zone. Kim et al. (1980) measured the 
vertical distribution of mean static pressure at a fixed hori
zontal position and found that the pressure was greatest in the 
mainstream, moderate in the recirculation zone, and smallest 
in the shear layer, quite different from the nearly invariant 
pressure distribution of the flow over a flat plate. 

*Data have been deposited to the JFE Data Bank. To access the file for this 
paper, see instructions on p. 193 of this issue. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
August 10, 1992; revised manuscript received November 10, 1993. Associate 
Technical Editor: D. M. Bushnell. 

Richardson (1984) used wall injection to simulate fuel vapor 
addition in a sudden-expansion combustor; he reported that 
wall injection enhanced the turbulence intensity of the recir
culating flow, de Groot (1985) used laser Doppler anemometry 
to probe the complex turbulent flow over a two-dimensional 
backward-facing step, finding that the maximum shear stress 
at each axial location increased due to side-wall injection, and 
that the reattachment length was insensitive to the injection 
velocity. In addition, side-wall injection smoothed the distri
bution of turbulence intensity and Reynolds shear stress in the 
recirculation zone and reduced the reverse velocity. The effects 
of wall injection on the behavior of mass and momentum 
transport across a shear layer associated with a separated flow 
are worthy of further investigation. For the attached flow case 
Schetz and Nerney (1977) and Schetz and Collier (1984) in
dicated that the velocity fluctuation level and turbulence in
tensity in the turbulent boundary layer increased with increasing 
rate of injection at the wall. 

To study the interaction between simulated fuel vapor and 
a recirculating flow for the purpose of improving our physical 
understanding of combustor flows and of verifying existing 
turbulence models, we took as our objective the examination 
of the turbulence features in the recirculation zone and the 
shear layer of a backward facing step with normal mass in
jection from the wall downstream of the step. 

2 Experimental Design 

2.1 Test Rig. A schematic diagram of the wind tunnel 
and instrumentation appears in Fig. 1. Experiments were con
ducted in an open-circuit wind tunnel powered by a 75 kW 
Roots blower with a speed controller. The blower provided a 
maximum flow rate of 50 m3/min with a maximum static 
pressure of 70 kPa. 
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Fig. 1 A schematic diagram of experimental apparatus 

To Environment 

To Compressor 

Fig. 2 Configuration and dimensions of test section 

The dimensions of the test section were 5 x 20 cm. The step 
height was chosen to be 1.5 cm, corresponding to an aspect 
ratio 13.3 to ensure two-dimensional flow conditions (Ellzey 
and Berbee, 1988). The configuration and dimensions of the 
test section are shown in Fig. 2. The base of the Plexiglass test 
section consisted of a porous stainless steel plate 20 x 30 cm2 

with 5-jwn pores. The air injected from the base plate into the 
test section was supplied by a 1.5 kW compressor. The pressure 
differences across the plate for various test conditions were in 
the range 4.8 — 6.4 kPa, whereas the maximum pressure drop 
in the recirculation zone was 0.1 kPa. Since the variation of 
the pressure difference across the porous plate within the test 
section was two-orders of magnitude higher than the variation 
of the static pressure in the flow, the normal bleed rates over 
the whole plate varied only 3 percent and thus assumed to be 
uniform. The flow structures were investigated quantitatively 
via the measurement of velocities and pressures. 

2.2 Instrumentation. The velocities were measured with 
a three-beam, 2-component backward-scattering LDA, which 
was connected to a computer-controlled traversing system for 
two-dimensional movement. The resolution of the traverse 
system was 0.03 mm. The instruments were mounted on an 
optical bench that was placed on a traverse table for major 
movement. 

The laser beam from an argon-ion laser (5 W), with radiation 
mainly at wavelengths 514.5 and 488 nm, was split into two 
beams. One beam passed through a Bragg cell to produce a 
40-MHz frequency shift and was then split again, through a 
color-selective beam splitter, into two beams, one of wave
length 514.5 and the other 488 nm. The resulting two beams 
and the original beam passed through a beam translator, a 
beam expander and a convergent lens of focal length 310 mm. 
The two axes of the blue beam of the optical probe were 0.128 
and 1.625 mm, whereas those of the green beam were 0.135 
and 1.713 mm. The backward-scattering Doppler signals were 

detected by two photomultipliers and processed by a coinci
dence filter and two counter processors. A beam-waist adjuster 
was used to improve signal strength. The seeding particles were 
generated and heated before being introduced into the air stream 
at the divergent section upstream of the screens in the wind 
tunnel. The particles, with a diameter of the order of 1 /im, 
were made of 25 percent glycerin resolvent and a water solvent. 

The static pressures near the base were measured with a 
tube, outer diameter 1.5 mm and L-shaped, having eight 0.1 
mm holes drilled around its end; the tube passed through the 
side wall of the Plexiglass test section. The probe used in the 
experiment was verified (Yang and Tsai, 1993) to be suitable 
for pressure measurement in the flow field. The measuring 
points were located at intervals of 1.0 H along the horizontal 
direction. The measured data were transmitted through a dif
ferential pressure gage and analyzed by a waveform analyzer. 
Measurements of pressure fluctuation were made by a piezo
electric transducer, a charge amplifier and noise filter. 

2.3 Experimental Conditions. The principal parameters 
of the experiments were the stream velocity ahead of the step 
(U0 = 20 ~ 60 m/s) and the normal bleed rate of air (Q = 0 ~ 540 
liter/min). The corresponding Reynolds numbers based on the 
upstream velocity and the step height, U0H/v, were 
(1.91-5.74) x 104. Injection velocities of the air bleed were 0, 
0.05 m/s, 0.10 m/s, and 0.15 m/s. Turbulence intensity of the 
flow upstream of the step was 0.8 percent. The boundary layer 
just upstream of the step was turbulent, having a maximum 
turbulence intensity around 6 percent. The thickness of the 
boundary layer before the step was 0.6 H at £/0 = 20 m/s. 

Westphal and Johnson (1984) reported that a similar flow 
structure could be attained if the spatial coordinate was nor
malized by the reattachment length. We chose the length of 
the recirculating zone, Xn as the reference of normalization, 
and defined it as the distance from the step to the location at 
which the mean horizontal velocity at 0.05 H above the wall 
was zero. The LDA measurements were conducted across the 
14 cross sections at 0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 
1.1, 1.3, 1.5 and 2.0Xr away from the backstep. Velocity data 
were conducted at every 0.05 i/in the range Y/H= - 0.9 —h 1.0 
with the lowest location 0.05 //above the wall. The measurement 
period for each data point was controlled to be less than 1 
minute. 

2.4 Data Accuracy. 2048 measurements were normally 
made at each measuring point. The corresponding maximum 
uncertainties were 3.2 percent for mean axial velocity, 4.9 
percent for mean normal velocity and 4.9 percent for turbu
lence intensity at the 95 percent confidence level. The corre
sponding maximum uncertainty for Reynolds shear stress was 
13 percent. As the definition of the Reynolds shear stress is 
-u'v', it is estimated that a 5 percent error of the root mean 
square quantities (w'2)'/2 and (i>'2)1/2 causes about 13 percent 
uncertainty of the Reynolds shear stress. 

The signal processing was conducted with two burst-period 
counters which used eight fringe crossings to determine the 
period of the signal. The counters then applied a 5/8 com
parison and a three-level validation circuit to minimize erro
neous periodic readings. The coincidence interval between the 
counters was of the order of nanoseconds to ensure the validity 

• of the readings. The frequency offset of the Bragg cells was 
large compared with the frequency shift from the flow velocity. 
The cycle period of the data acquisition system was small 
compared with the measurement period in the recirculating 
zone. This allowed multiple readings on the same seeding par
ticle, and the influence of the sampling bias is thus significantly 
reduced. Furthermore, a two-dimensional weighting model 
proposed by Johnson et al. (1984) was applied to the analysis 
of the raw data and showed fairly good agreement with our 
results. More than 2000 data points were taken for each pres-
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profiles at (/„ = 20 m/s; cross sections of X/Xr=0.&, 0.9,1.0,1.1,1.3 and 
1.5. (Uncertainty in mean horizontal velocity is less than ±3.2 percent.) 

sure measurement; the sampling period was 500 /xs. The un
certainty of the pressure data was estimated to be less than 5 
percent. 

3 Results and Discussion 

3.1 Mean Horizontal Velocity. A comparison between 
the mean horizontal velocity profiles with and without various 
normal mass bleed rates at U0 = 20 m/s is shown in Figs. 3(a) 
and 3(b). Curves for injection rates of 0, 0.5, 0.10, 0.15 m/s 
are almost coincident at 0.2 Xr. After 0.3 Xn the mean velocity 
is reduced near the wall as the injection rate is increased. This 
trend agrees with that of Schetz and Collier Jr. (1984), Cebeci 
and Mosinskis (1971), and de Groot (1985). As the horizontal 
momentum is conserved, the mixing between the injected mass 
and the recirculating fluid near the wall creates an increase of 
mass, and thus results in a smaller horizontal velocity. The 
affected area is, however, restricted to 0.3 H above the wall 
(Y/H= -0.7) as a result of the velocity of the injected fluid 
being significantly less than that in recirculation zone. This 
behavior differs from that in the redeveloping region, in which 
the greater rate of injection generates a smaller horizontal 
velocity within the boundary layer but a higher velocity outside 
the boundary layer. 

Streamlines of the flow field with and without normal mass 
addition are sketched in Figs. 4(a)-4(£>), respectively. The 
stream function is defined as 

cM = -—dx+—dy 
dx dy (1) 

The mass flow rate, equals to the difference between the two 
stream functions, is calculated from the following equations. 

c W = - l Vdx+\ Vdy (2) 
1 J*! ^y\ 

Fig. 4(a) Vs = 0 

Fig. 4(b) Vs = 0.10 m/s. (Uncertainty in mean horizontal velocity is less 
than ±3.2 percent.) 

Fig. 4 Streamlines of the flowfield when the upstream velocity is 20 
m/s 

dV- Vs(x2-xi) + T>Udy (3) 

Normal injection induces partial mass bleed from the recir
culating zone into the redeveloping boundary layer down-
strearh. 

The effect of normal mass bleed on maximum reverse ve
locity at various cross sections in the recirculating zone at 
U0 = 20 m/s is depicted in Fig. 5. The mass bleed rate reduces 
the maximum reverse velocities at each cross section. The great
est reverse velocity occurs at 0.6 Xr, with values in the range 
0.16C/0 — 0.22U0. Divergence of maximum reverse velocities for 
various mass bleed rates are prominent in the rear part of the 
recirculating zone, but not significant in the leading part. 

The dimensionless local reverse flow rate is defined as 
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Fig. 5 Effect of normal injection on maximum reverse velocity at U0 = 20 
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Normalized Horizontal Position, X/Xr 

Fig. 6 Dimensionless reverse flow rate of each section along the hor
izontal direction at U0 = 20 m/s. (Uncertainty in dimensionless reverse 
flow rate is less than ± 3.2 percent.) 

Qr/UoH = 
•>-H 

udy/UoH (4) 

in which;'* corresponds to the point of zero horizontal velocity 
with negative horizontal velocity between y= —Hand v*. The 
distributions of the reverse flow rates (Qr/UoH) along the nor
malized horizontal distance (Fig. 6) show that the maximum 
reverse flow rates are located between 0.4 — 0.5 Xr. The reverse 
flow rate decreases as the wall injection velocity increases. 
Differences in reverse flow rates for various mass injection 
rates are small in the leading part, but prominent in the rear 
part of the recirculating zone. Hence less mass is rolled up 
from the main stream into the recirculating zone when the fluid 
is normally injected. 

3.2 Static Pressure on the Wall. Horizontal variations of 
the static pressure coefficient along the wall for various in
jection rates at C/0 = 20 m/s are depicted in Fig. 7. The border 
of the recirculating zone, separately denoted by arrows, is 
located where the highest pressure gradients are. Static pressure 
increases significantly in the front part of the recirculating 
zone as the injection rate increases. The vertical pressure dif
ference across the shear layer is therefore subdued and the 
bending downward of the shear layer is prolonged. As a result, 
the length of recirculating zone increases with increasing rate 
of injection. Deviations among the distributions of the di
mensionless static wall pressure, which correspond to different 
injection rates, gradually diminish after the recirculating zone. 

A similar trend for t/0 = 60 m/s is indicated in Fig. 8. The 
lengths of the recirculating zone are 6.57 H, 6.6 H, 6.67 H, 
and 6.7 H for the injection rates 0, 180, 360, and 540 liter/ 
min, respectively. The value of the smallest pressure coefficient 
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r. 
-0.3 

Q=0 liter/min-
Q=180 liter/min 
Q=360 liter/min 
Q=540 liter/min" 

2 4 6 8 10 

Normalized Horizontal Position, X/H 

Fig. 7 Horizontal variation of wall static pressure coefficient with var
ious injection rates at U0 = 20 m/s. (Uncertainty in mean pressure is less 
than ±5 percent.) 

2 4 6 8 10 

Normalized Horizontal Position. X/Xr 

Fig. 8 Horizontal variations of wall static pressure coefficient with 
various injection rates at U0 = 60 m/s. (Uncertainty in mean pressure is 
less than ±5 percent.) 
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Fig. 9 Wall pressure spectrum of flow at O0 = 20 m/s, X/Xr= 1.0 

without mass bleed at U0 = 60 m/s is almost the same as that 
of 20 m/s. Deviations of both pressure coefficients and length 
of the recirculating zone are smaller than those for 20 m/s. 
The length of the recirculating zone for U0 = 60 m/s is also 
smaller than for 20 m/s. 

The vortex shedding frequency is analyzed through the meas
urements of pressure fluctuations. A typical spectrum of the 
wall pressure fluctuation near the end of the recirculating zone 
at Uo = 20 m/s appears in Fig. 9. The frequency of the vortex 
train, denoted by a symbol/*, is linearly proportional to the 
upstream flow velocity no matter how much mass is injected 
(Fig. 10). The dimensionless Strouhal number has a value of 
0.0134. The frequencies of 1/2/* and 1/4/* may come from 
the pairing of eddies. However, alteration of the injection rate 
creates no obvious variation in the spectra. 

The relationship between the length of the recirculating zone, 
the injection rate, and the upstream flow velocity is shown in 
Fig. 11. The length of the recirculating zone increases as the 
injection rate increases. According to the wall pressure distri-
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bution in Fig. 7, normal injection raises the static pressure in 
the recirculating zone. The pressure difference across the shear 
layer is greatly enhanced with increased stream velocity. That, 
in turn, decreases the length of the recirculating zone. The 
influence of the normal injection rate is inversely proportional 
to the inlet flow velocity. The length of the recirculating zone 
between normal mass bleed rates 0 and 540 liter/min increases 
0.5 H at U0 = 2Q m/s, but only 0.1 H at (70 = 60 m/s. 

3.3 Turbulent Features. The definition of turbulence in
tensity is two dimensional and expressed as follows: 

Turbulence intensity = (5) 

D Q=0 liter/min 

+ Q=180 liter/min 

O Q=360 liter/min 

A Q=540 liter/min 

Velocity (m/s) 
Fig. 10 Variation of the fluctuating frequency in the recirculating zone 
with various inlet velocities and mass bleed 

The influence of mass bleed through the porous wall on tur
bulence intensity is more remarkable than its effect on the 
mean horizontal velocity, as depicted in Figs. 12(a) and 12(b). 
The turbulence intensity near the porous plate is significantly 
dampened when the amount of mass bleed increases. This trend 
is similar to that found by de Groot (1989), but different from 
that by Schetz and Nerney (1977) and Schetz and Collier, Jr. 
(1984). The reduction of the turbulence intensity is obvious at 
X/Xr-Q.2 and 0.3, which are near the step. The four curves 
corresponding to the injection velocities of 0, 0.05, 0.10, 0.15 
m/s converge at Y/H= -0 .3 , where the vertical velocity 
changes from positive to negative. The reduction of the tur-

180 360 

Mass Injection Rale, Q (liler/min) 

Fig. 11 Effect of normal injection on reattachment length at various 
upstream velocities. (Uncertainty in reattachment length is less than 
±1.4 percent.) 
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Fig. 12(b) Effects of the normal injection rate on turbulence intensity profiles at U0 = 20 m/s; cross sections 
of X/Xr=0.8, 0.9,1.0, 1.1,1.3, and 1.5. (Uncertainty in turbulence intensity is less than ±4.9 percent.) 
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of X/Xr = 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7. (Uncertainty in Reynolds shear stress is less than ±13 percent.) 
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bulence intensity is limited in the region V> 0. The differences 
among the four curves near the porous wall remain large for 
the profiles X/Xr = 0.4 and 0.5. The convergent positions move 
upward to the dividing streamlines of the step, which indicates 
that the injected fluid, with a smaller turbulence intensity, 
penetrates into the upper side of the recirculating zone. 

The effects of mass bleed on the distribution of Reynolds 
shear stress at ^0 = 20 m/s is depicted in Figs. 13(a) and 13(£>). 
Near the wall region (Y/H= -0.8-0.9) at X/Xr = 0.2, al
though the velocity fluctuations may vary 100 percent for dif
ferent conditions, no obvious change in Reynolds shear stress 
was observed because of the negligible velocity gradient in that 
region. The effect of mass bleed on Reynolds shear stress 
becomes significant in the region of Y/H— - 0.8 0.45 and 
it decreases as the rate of mass bleed increases. The maximum 
gradients of Reynolds shear stress are located on both bound
aries of the shear layer; for example, at Y/H= -0.45 and 
Y/H=0.1 on the cross section of 0.2 Xr. The shear layer 
certainly retains high level of shear stress as well as a large 
velocity gradient and velocity fluctuation level. As shown in 
the figure, the distribution of Reynolds shear stress in the shear 
layer region is diffuse and no clear trend is observed. The 
Reynolds shear stress in the shear layer is expected to be un
affected as the velocity and velocity fluctuation in this region 
are unaffected by wall injection. Generally, the region near 
the wall in the front of the recirculation zone is more affected 
than that in the rear. The flow near the wall of the recirculation 
zone has a negative dU/dYand is expected to display a negative 
Reynolds shear stress. However, data cannot be collected very 
near the wall because of instrument limitations. The flow field, 
therefore, displays no negative Reynolds stress except for a 
few points near the wall in the front part of the recirculation 
zone. 

s o.ot 

ACCEPTABLE DATA 
ENVELOPE 
UY EATON & JOHNSTON (1981) 

_L J_ 
0 0.5 1 1.5 2 

Normalized Horizontal Position, X/Xr 

Fig. 14 Effect of normal injection rate on maximum Reynolds shear 
stress of each cross section. (Uncertainty in Reynolds shear stress is 
less than ±13 percent.) 

The effect of normal mass bleed rate on the maximum Reyn
olds shear stress along the axial direction at l/0 = 20 m/s is 
shown in Fig. 14. The previous data on the maximum Reynolds 
shear stress summarized by Eaton and Johnson (1981) are also 
indicated in the figure. All corresponding data from this work 
fall within the envelope, except for those at ̂ r = 0.6, 0.7 for 
g = 0 and ̂  = 0.8 for Q=180 liter/min. The results of the 
cases Q = 0 and 180 liter/min reveal that the peak values occur 
at locations in front of those previously indicated by Eaton 
and Johnson. The distributions of the maximum Reynolds 
shear stresses are smoother for the cases of Q = 360 and 540 
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liter/min than for those with no normal mass bleed. The max
imum Reynolds shear stresses are generally dampened due to 
normal injection. The effects of the injection rate on the pro
files of turbulence intensity and Reynolds number at U0 = 40 
and 60 m/s were less significant, but qualitatively similar to 
those at 20 m/s. 

4 Conclusions 
Normal injection significantly affects the flow features of 

the recirculation zone behind a backstep. The horizontal ve
locity near the wall in the recirculation zone decreases with 
increasing rate of mass bleed. Both the maximum reverse ve
locities and reverse flow rates along the axial position in the 
recirculation zone decrease when the normal bleed is intro
duced. Reductions of the reverse velocities by various rates of 
mass bleed are evident at the rear of the recirculation zone, 
but ambiguous at the front. Normal mass bleed also induces 
greater recovery of pressure in the redevelopment region and 
reduces the pressure difference across the shear layer. 

Concerning turbulent features, mass bleed through the wall 
effectively suppresses the velocity fluctuations, the turbulence 
intensity and the Reynolds shear stress within the whole re
circulation zone. The fluctuations in the region of the re-de
veloping boundary layer are however enhanced. Maximum 
attenuation of turbulence intensity occurs at the cross section 
near the backstep. The results for the vertical velocities and 
the turbulent intensities at various normal bleed rates indicate 
that the interaction of the injected fluid with the shear layer 
of the recirculation zone begins at 0.4 Xr and becomes appre
ciable after 0.8 Xr. The results also reveal that the peak values 
of Reynolds shear stress are located in front of those previously 
indicated by Eaton and Johnson (1981). The distributions of 
the maximum Reynolds shear stresses were smoother for the 
cases of larger bleed rates than for no normal mass bleed. 

JFE Data Bank Contribution 
The data presented in the figures of this paper have been 

edited and deposited in the JFE Data Bank for the use of any 
of the readers. The data included mean and r.m.s. fluctuation 
of horizontal velocity, mean and r.m.s. fluctuation of vertical 
velocity, reverse velocity and reverse flow rate in the recir

culating zone, wall static pressure coefficient, wall pressure 
spectrum, reattachment length, turbulence intensity and Reyn
olds shear stress. The files also include instructions on the data 
format. To access the file of this paper, see instruction on p. 
193 of this issue. 
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Cavity Flow Predictions Based on 
the Euler Equations 
An Euler solver based on artificial-compressibility and pseudo-time stepping is de
veloped for the analysis of partial sheet cavitation in two-dimensional cascades and 
on isolated airfoils. The computational domain is adapted to the evolution of the 
cavity surface and the boundary conditions are implemented on the cavity interface. 
This approach enables the cavitation pressure condition to be incorporated directly 
without requiring the specification of the cavity length or the location of the inception 
point. Numerical solutions are presented for a number of two-dimensional cavity 
flow problems, including both leading edge cavitation and the more difficult mid-
chord cavitation condition. Validation is accomplished by comparing with experi
mental measurements and nonlinear panel solutions from potential flow theory. The 
demonstrated success of the Euler cavitation procedure implies that it can be in
corporated in existing incompressible CFD codes to provide engineering predictions 
of cavitation. In addition, the flexibility of the Euler formulation may allow extension 
to more complex problems such as viscous flows, time-dependent flows and three-
dimensional flo ws. 

Introduction 
The literature of the past several decades contains numerous 

models and analyses of sheet cavitation for flows over simple 
bodies such as airfoils. Some representative papers that de
scribe a portion of this include Tulin (1953), Wu (1972), Geurst 
(1959), Hsu (1975), Tulin and Hsu (1980), Schultz and Kueny 
(1986), and Uhlman (1987). The classical approach to cavitation 
analysis is to treat the liquid/cavity interface as a constant 
pressure surface and to describe the flowfield by the velocity 
potential equations. The resulting cavity predictions are gen
erally in reasonable agreement with experiment, although the 
application of potential methods to more complex configu
rations is difficult. The objective of the present paper is to 
incorporate cavitation models analogous to those that have 
been used in potential flow analyses into Euler equation solvers 
to provide a method for incorporating cavitation modeling in 
modern CFD codes. A further reason for using the Euler equa
tions is to provide a foundation for developing more complex 
and physically complete cavitation models. 

In the velocity potential approaches, the earlier workers used 
conformal mapping to determine the flow field (Geurst, 1959; 
Hsu, 1975; Tulin and Hsu, 1980), while more recently workers 
have used surface singularity distribution methods (Uhlman, 
1987). Some of these cavitation analyses have been based on 
linear theories in which the constant pressure condition is en
forced on the airfoil surface (Tulin, 1953; Geurst, 1959), while 
others have used nonlinear theories in which the pressure con
dition is applied on the cavity surface (Tulin and Hsu, 1980; 
Uhlman, 1987). 

The traditional approach that is selected with velocity po-

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
August 21, 1992; revised manuscript received June 8, 1993. Associate Technical 
Editor: R. H. Panton. 

tential methods is the indirect, rather than the direct, cavitation 
problem. That is to say, the constant pressure condition is 
typically implemented by starting from a prescribed cavity 
length and allowing the level of the cavitation pressure to be 
determined as a part of the solution. Thus, after the flowfield 
has been obtained for a known cavity length, the level of the 
pressure in the cavitation region is deduced. In principle, a 
number of such inverse calculations for different cavity lengths 
can be used to obtain a particular cavitation pressure, but this 
iterative approach is seldom used. Researchers instead have 
preferred to conduct parametric studies as a function of cavity 
length. Although a bit more difficult, it is possible to formulate 
velocity potential methods so that the cavitation pressure can 
be specified and the cavity length determined, but the authors 
are unaware of any application of this procedure. 

In general, all velocity potential models require some sort 
of closure condition at the trailing edge of the cavitation bub
ble. This closure condition frequently takes the form of a 
singularity or an afterbody shape that guides the flow back to 
the solid surface in a smooth fashion (Uhlman, 1987; Buist 
and Raven, 1990). This approximation to the local physics at 
reattachment allows reasonable comparison with experiment. 

In the present paper we use numerical solutions of the Euler 
equations to replace the velocity potential methods. The so
lution of the Euler equations is more CPU-intensive than that 
of the singularity distribution methods that are used in the 
potential formulation, but there are a number of types of 
application for which the Euler methods appear to have an 
advantage. For example, potential flow methods become dif
ficult to apply in complex geometries when multiple bodies are 
present, and they fail entirely in the presence of rotational 
effects such as those that arise from nonuniform inflows. These 
limitations are more easily overcome when using the Euler 
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equations. Another drawback of potential flow methods is that 
the indirect cavitation analysis effectively restricts the cavi
tation models to two-dimensional steady flows. Extensions to 
three-dimensional or unsteady flows will most likely require 
direct solution methods based on cavitation pressure. These 
are more easily incorporated in Euler analyses. There is also 
the promise that the application of the Euler equations to 
cavitation modeling may enable improved physics to be in
corporated into the cavitation model (although in this initial 
application, the cavitation model chosen is philosophically the 
same as those used for the potential flow theories). For ex
ample, the combination of cavitation models with the Euler 
equations serves as a precursor to incorporating similar models 
in the full Navier-Stokes equations allowing more realistic 
treatments of the cavitation inception point and the cavitation 
closure condition. Finally, an Euler based cavitation model 
also provides a method for including cavitation in inducer and 
pump-flow CFD codes that are currently being developed for 
design purposes (McConnaughey et al., 1992). 

Although the cavity model chosen for use with the Euler 
equations in the present paper is analogous to those used in 
previous velocity potential studies, the method of application 
is somewhat different. For the Euler equations, the prediction 
of a constant pressure region on the cavity surface is most 
readily accomplished directly rather than indirectly. The pres
sure is specified on the cavity surface and the length is deter
mined by the computation. The Euler equations are solved by 
an explicit multi-step method (Merkle and Tsai, 1986), that 
does not require an a priori knowledge of the location of the 
cavity. The cavity inception point as well as the cavity profile 
are determined by enforcing both the constant cavitation pres
sure and the zero normal velocity condition on the cavity sur
face. To avoid numerical difficulties, an after-body like that 
used in the potential flow models, is added in the closure region 
where the flow behavior is not well understood. 

Both linear and nonlinear cavity models are attempted but 
it is shown that the linear model is not well-founded for the 
Euler equations because of a lack of physical boundary con
ditions. This shortcoming is circumvented in the nonlinear 
application of the theory, and the results are in good agreement 
with experiment and with velocity potential models, as is shown 
below. In the nonlinear method, an iterative procedure is used' 
to update the cavity surface and the computational domain is 
re-gridded accordingly over the body/cavity surface. The cav
ity conditions are always applied directly on the latest cavity 
surface. 

Besides comparing the predictions of the Euler-equation-
based cavitation model with experiment and with the predic
tions of a similar potential-flow method, parametric studies 
of the effects of angle of attack on single airfoils are presented 
along with predictions for airfoils in cascade with different 

cascade spacing and for different cavitation pressure levels. 
The present analysis is limited to two-dimensional steady flows. 

Governing Equations and Computational Procedure 
The steady-state two-dimensional incompressible Euler 

equations in vector form are 

V-V = 0 Continuity 

(V • V)V = - Vp Momentum 

where the density has been absorbed in the pressure. When 
written in a strongly conservative form in generalized coor
dinates using the unsteady artificial compressibility formula
tion the above equations become 

dr d£ dr) (1) 

where 

and 

ft I " \ I v \ 
Q= u , E=luU+y,p\, F=\uV-ylp\ 

\vj \vU-XrpJ \vV+x^pJ 
Here 0 is the artificial compressibility parameter and U and 
V are the contravariant velocities in the £ and ?j directions 
respectively 

U= uyn - vxn 

V= vXj: - uy^ 

The time derivatives and the artificial compressibility term 
in Eq. (1) are added for computational purposes to enable a 
time marching scheme to advance the flow variables in the 
system. The resulting unsteady Euler system is solved numer
ically by an explicit time-marching procedure. When the so
lution converges, the time derivatives approach zero and the 
steady state Euler solution corresponding to the specified 
boundary conditions is recovered. The artificial compressibility 
term has no physical meaning but its coefficient /3 is chosen 
to scale the eigenvalues of the system to the same order of 
magnitude so that efficient convergence rate can be achieved. 
In general curvilinear coordinates, /3 is defined by: 

(U+ V)1 

(x\ + x\+y\+y\) (2) 

Nomenclature 

c = chord length 
Cp -- non-dimensional pressure 
E = £ flux vector 
F = rj flux vector 
h = cascade spacing 
L = selection matrix 
M = inverse of modal matrix 
n = Pseudo-time step 
p = local static pressure 

p0 = total pressure 
px = static pressure at far-

field 
pc = cavitation pressure a i . ot2, 

Q = vector of primary depen
dent variables 

u = x-direction velocity com
ponent 

«» = velocity at inlet 
U = ^-direction contravariant 

velocity 
v = ^-direction velocity com

ponent 
V = ^-direction contravariant 

velocity 
', y = Cartesian coordinates 

a = angle of attack 
a3 = Runge-Kutta constants 

P = artificial compressibility 
factor 

T = modified identity matrix 
£, i\ = transformed coordinates 

P = fluid density 
a = cavitation number 
T = Pseudo time variable 
fi = boundary condition vec

tor 

Subscripts 
£, r? = differentiation with re

spect to transformed co
ordinates 

Journal of Fluids Engineering MARCH 1994, Vol. 116/37 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

file:///vU-XrpJ


A four-step Runge-Kutta explicit scheme is used to advance 
the solution in pseudo-time, given as 

(SE dF\" 

fdE dF\* 

Here the constants a\ through a3 are set to the sequence 
1/4, 1/3, and 1/2, respectively. All spatial derivatives are cen
tral-differenced and local time stepping is used to achieve better 
convergence rates. A fourth order artificial viscosity (Kwak et 
al., 1986) of the form 

D=W+1>7 (4) 

is added to prevent odd-even splitting in the numerical solution. 
With the addition of the artificial time derivative, the gov

erning Euler equations become hyperbolic thereby enabling 
the use of the Method of Characteristics (MOC) to formulate 
the boundary conditions in a manner analogous to compress
ible flow. The mathematical theory of the MOC states that 
only the information that propagates into the computational 
domain from the boundary should be specified at the bound
ary, whereas the information that propagates towards the 
boundary from within the computational domain must be de
termined from a subset of the governing equations inside the 
domain. This equation subset is determined from MOC theory. 

The MOC type of boundary can be formulated as (Merkle 
and Tsai, 1986): 

(£*«r')«r'~A**-(^)" ») 
Here the equation(s) 

0 = 0 (6) 

represent(s) the specified boundary condition(s): The diagonal 
selection matrix, L, which contains ones corresponding to the 
characteristics propagating toward the boundary and zeros for 
those coming into the domain, selects the appropriate subset 
of equations after they have been premultiplied by the eigen-
matrix, M, of the system. 

Applying the method of characteristics to the above flow 
problems indicates that the inflow shall be determined by two 
boundary conditions plus one characteristic equation. For the 
present solutions we specify the total pressure and the inflow 
angle. At outflow only one boundary condition is needed. 
Hence, the static pressure along with two characteristic equa
tions form the outflow boundary equations. On the noncav-
itating portion of the airfoil surface zero normal velocity is 
specified augmented by two characteristic equations. Boundary: 
conditions on the cavitating interface are given in the next 
section. 

Cavitation Model 
The procedure for determining the shape and location of 

the cavity interface is analogous to that used for potential flow 
analyses. The interface location is determined by over-speci
fying the boundary relations on it. The set of over-specified 
boundary conditions includes those that are normally pre
scribed on an inviscid solid surface plus the additional speci
fication of the cavity pressure on the interface. With these 
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boundary relations specified, the interface location is deter
mined as a part of the marching process. 

In keeping with the potential flow models, both a "linear" 
and a "nonlinear" procedure may be used to enforce the cavity 
conditions. These terms are used in a manner analogous to 
that used in airfoil theory. ("Linear" airfoil theory enforces 
the boundary conditions on the chord line, while "nonlinear" 
theory enforces the boundary conditions on the surface of the 
surface of the airfoil.) For the "linear" cavitation case, the 
cavity conditions are transferred to the corresponding airfoil 
surface so that the computational domain is independent of 
the cavity size and shape. For the nonlinear procedure, cavity 
conditions are applied directly on the cavity interface. As a 
consequence, the boundary of the computational domain 
evolves with the cavity in the nonlinear case, and regridding 
is required when the cavity surface is updated. 

For both the linear and nonlinear theories the cavitation 
computations are started from a converged noncavitating so
lution for the flow over the geometry of interest. The cavitation 
model is then incorporated into the numerical analysis by 
checking the pressure distribution on the airfoil against the 
specified cavitation pressure. If the pressure at any point on 
the airfoil surface drops below the vapor pressure, that point 
is switched from a "solid wall" point to a "cavity" point. 
One or more time steps are then taken with the cavitation 
pressure specified as the surface boundary condition at these 
cavitating points. This boundary conditions allows the normal 
velocity at the surface to deviate from zero. 

After identifying the cavitating points and updating the ve
locity, a first cavity profile is defined by integrating the stream
line starting from the first cavitating point to the last one. The 
upstream-most cavitating point fixes the location of the cav
itation inception point. The resulting cavitation interface is 
established by ensuring that the cavity profile is non-negative 
at each grid point. Negative cavity thicknesses correspond to 
the cavity interface moving inside the airfoil surface. Points 
with negative cavity thickness are treated as noncavitating 
points in the next time step. This check on cavity thickness is ' 
the primary technique that allows the cavity length to contract 
if necessary as the iteration proceeds. 

If the cavity ends with a finite thickness (this is the normal 
condition), the cavity is closed by adding an afterbody (Tulin 
and Hsu, 1980; Buist and Raven, 1990). The afterbody shape 
chosen here is a cubic profile that merges smoothly with the 
cavity interface and approaches the body surface tangentially. 
The standard surface boundary condition (zero normal veloc
ity) is applied on the afterbody. For all cases presented herein, 
the afterbody length was empirically fixed as three times the 
height at the end of the cavity. Comparison with data indicates 
that this gives reasonable results. 

Linear Cavitation Theory 
The linear cavitation approximation is analogous to the clas

sical linear theories that are widely used for airfoils under small 
angles of attack. The cavitating region is identified from the 
pressure distribution on the airfoil surface as discussed above. 
The pressure at the interface is fixed at the vapor pressure and 
the liquid-vapor interface conditions are transferred to the 
relevant part of the body surface. The zero normal velocity 
condition is then relaxed and replaced by a combination of 
mass injection and mass removal at such a rate that the desired 
interface location becomes a streamline. Although this linear 
cavity approximation has been widely used for velocity po
tential methods, it introduces some difficulties into the Euler 
analysis as is discussed below. 

The difficulties arising in the linear Euler analysis are as
sociated with the boundary conditions on the cavitating portion 
of the airfoil surface. In the linear approximation, the cavity 
interface position requires that fluid be injected through some 
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parts of the airfoil surface (to accommodate growth of the 
cavity) while it is removed through other parts (to accom
modate thinning of the cavity). These regions of inflow and 
outflow require corresponding inflow and outflow boundary 
conditions. In an Euler solution based on artificial compress
ibility, the number of boundary conditions to be specified 
equals the number of inward-running characteristics at the 
boundary. 

The removal of fluid, which corresponds to an outflow 
boundary, creates no difficulties because there is one in-run
ning characteristic and one obvious physical boundary con
dition, the cavity pressure. This boundary condition is 
augmented by two characteristic equations corresponding to 
the out-running characteristic lines. These three conditions 
represent a complete set of boundary relations, and the nec
essary outflow velocity is obtained from the computational 
solution. 

By contrast, the injection portion of the cavity surface cor
responds to an inflow boundary for which there are two out
running characteristics. The inflow portion of the cavity there
fore requires an extra boundary condition in addition to the 
cavity pressure. This additional boundary condition is difficult 
to extract from the fluid dynamics, and an arbitrary numerical 
condition must be provided. One approach we have tested is 
to specify the total pressure of the inflow as equal to that 
corresponding to upstream conditions. Although this appears 
to be a plausible choice, it causes some problems in obtaining 
solutions that are qualitatively realistic. A second approach, 
and one that was used for the solutions reported in this paper 
is to treat this inflow region as an outflow boundary with one 
boundary condition and two differential relations from the 
equations of motion. This approach provided reasonable so
lutions so long as the linearized cavity was reasonably small. 
This arbitrariness vanishes in the nonlinear procedure as is 
noted below. 

In addition to problems with boundary conditions for the 
linear problem, the translation of the boundary condition to 
the airfoil surface makes it difficult to apply an afterbody to 
close the cavity, and all linear calculations were made without 
a closure condition. As a result, the strong curvature in the 
termination region of the cavity introduces a singularity into 
the linear representation. This local singularity is difficult to 
accommodate in an Euler solution. Additional effort to cir
cumvent this difficulty was not made because it disappears in 
the nonlinear formulation. Further, our primary emphasis was 
on the nonlinear method and the linear method was used only 
as a means to obtain the nonlinear solution. 

Nonlinear Cavitation Theory 
In the nonlinear theory the cavity boundary conditions are 

applied directly on the cavity surface so the controversy of 
"inflow" and "outflow" is removed. The two boundary con
ditions that are used for defining the cavity interface shape 
are that the flow be tangent to the currently assumed cavity 
shape (replacing the inflow/outflow condition for the linear 
case), and that the pressure on the interface be equal to the 
cavitation pressure. 

The nonlinear approach is a sequence of linear solutions 
performed over the most recently updated cavity surface, cou
pled with modifications of the computational domain to in
corporate the current cavity shape. In the limit of convergence 
the flow satisfies the constant pressure condition and is tangent 
to the cavity surface. As before, the cavity location is identified 
from the pressure distribution on the airfoil surface and the 
constant pressure condition is used to replace the zero normal 
velocity condition for cavitating points. The finite normal ve
locities on the current cavity surface are then obtained from 
the linear solution as described above. These velocities are 
subsequently used to update the cavity surface by tracing the 
streamline emanating from the cavity inception point. 

Once an initial cavity geometry has been established, the 
grid is again updated to include the change in the boundary 
due to the cavity. The computation on this new grid at the 
next time step follows a linear cavitation pattern. The non-
cavitating points on the body surface are treated in standard 
fashion, while those points on the cavitation interface are 
treated as constant pressure points, with mass injection or 
removal specified on the interface to adjust the flow to the 
cavity pressure. The cavity interface shape is then updated by 
again tracing the streamline emanating from the initial cavi
tating point. As the iterative procedure marches forward, the 
cavity surface evolves and the solution approaches a converged 
one with both the tangency and the pressure conditions being 
satisfied. Because each intermediate surface shape is an im
proved approximation to the converged cavity shape, the 
strength of the mass injection and removal goes to zero as the 
calculation proceeds. Thus, at convergence, there are no re
maining grid points with mass injection or removal. Conse
quently, the boundary condition at convergence is the cavity 
surface, and the combination of two characteristics and one 
boundary condition on the surface is mathematically and phys
ically correct. 

Numerical experiments have demonstrated that this method 
of enforcing the pressure on the cavity surface during the 
iteration is more effective than using the predicted interface 
shape for an "impermeable wall" calculation. For the cal
culations presented here, grid updating was accomplished every 
five to twenty time steps. 

Results 
Representative Euler predictions for leading edge cavitation, 

mid-chord cavitation and cavity length are given below and 
compared with experiment. In addition, comparison of cavi
tation in a cascade of airfoils is compared with a panel method 
solution, and parametric studies of the effect of cascade spac
ing, angle of attack and cavitation pressure are presented. The 
Euler calculations are computed on stretched grids of 262 X 91 
nodes. Convergence to steady-state required nominally 5000 
time-steps for all cases. The presence of cavitation slowed down 
the convergence by 10-20 percent. 

Leading Edge Cavitation Prediction 
The first step in the validation of the cavitation model is to 

compare with the measurements of Shen and Dimotakis (1989) 
for a NACA66(MOD) + a = 0.8 airfoil. The airfoil geometry 
and the near-field details of the C-grid used for the compu
tations are shown in Fig. 1. The experiments were conducted 
with the airfoil centered in a water tunnel whose walls were 
five chord lengths apart. The presence of the walls was sim
ulated in the computations by placing an inviscid boundary at 
that location. This outer boundry condition implies that tunnel 
wall boundary layer effects have been omitted. Calculations 
show that wall blockage effects have a noticeable impact on 
the airfoil pressure distribution as is noted below, but the 
omission of tunnel wall boundary layers should not affect this 
distribution materially. 

To set the stage for the cavitation predictions, we first com
pare the pressure distribution on the noncavitating (fully-wet-

• ted) hydrofoil with the experimental measurements. 
Representative comparisons for an angle of attack of one de
gree and chord Reynolds number of 3 x 106 are given on Fig. 
2. As can be seen, the predicted pressure distribution is in 
relatively good agreement with the measurements. (Note that 
all the pressure taps were placed on the suction side.) Corre
sponding computations for an isolated airfoil (which were also 
verified by panel method potential flow solutions) demon
strated the importance of the tunnel walls on the surface pres
sure distribution, even at this relatively small blockage ratio. 
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Fig. 1 Details of airfoil geometry and C-grid used in CFD computations 
for cavitating flow over NACA66(MOD) + a = 0.8 airfoil. Grid size is 
262x91. 
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Fig. 2 Pressure distribution on a NACA66(MOD) + a = 0.8 hydrofoil for 
noncavitating flow. Comparison between Euler computations and ex
perimental measurements from Shen and Dimotakis at one degree angle 
of attack. 

Overall, this comparison (as well as numerous others not pre
sented here) demonstrates that our Euler calculation (in the 
absence of cavitation) gives satisfactory agreement with ex
perimental measurements and with potential flow theory. Con
sequently, we next turn to predictions of cavitation on this 
same airfoil. 

Measurements for a Reynolds number of 1.2 X 106, but an 
angle of attack of four degrees, show a significant cavitation 
region on the suction side of the airfoil for most tunnel pressure 
conditions. A series of cavitation calculations for the four 
degree angle of attack case were performed on a 262 x 91 grid 
similar to that shown in Fig. 1. Details of the computed flow-
field for one such case corresponding to a nondimensional 
cavitation pressure of o = (pc-p„)/l/2pul, = 1.0 are presented 
in Fig. 3. The final grid of the flow domain is shown in Fig. 
3(a) which also shows the cavitation which also shows the 
cavitation region. The deformed grid around the cavitation 
bubble appears clearly in the figure. Details of the solution 
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Fig. 3 Near-field details of converged solution over 
NACA66(MOD) + a = 0.8 hydrofoil from nonlinear Euler computations 

Cp=-l.o Numerical 

Fig. 4 Pressure distribution and cavity profiles on a 
NACA66(MOD) + a = 0.8 hydrofoil for cavitating flow. Comparison be
tween nonlinear Euler computations and experimental measurements 
from Shen and Dimotakis at four degrees angle of attack. 

showing the pressure contours and velocity vector fields around 
the cavity are presented in Figs. 3{b) and 3(c). 

Detailed predictions of cavitation on this airfoil are com
pared with experimental measurements in Fig. 4. Both the 
airfoil pressure distribution and the computed cavity profiles 
are shown in the figure. Four cases, the noncavitating con
dition, and three cavitating conditions at different pressure 
levels (cavitation numbers, o= 1.0, 0.9 and 0.84), were carried 
out and compared with experiment. For the cavitating con
ditions the pressure levels in the cavity were taken from the 
experiment. Cavity lengths greater than about //c = 0.75 were 
not computed, since, as discussed by Shen and Dimotakis 
(1989), the cavity becomes unsteady and oscillates for long 
cavities. 

The comparisons in the figure show the predicted cavity 
lengths are in good agreement with the measurements for all 
three cavitation conditions. The favorable comparison of the 
pressure distribution over the remainder of the airfoil suggests 
that the shape of the cavity is also well predicted. A further 
characteristic of the predictions is the presence of a steep pres
sure rise following the cavity termination region. This local 
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Fig. 5 Lift coefficient on a cavitating NACA66(MOD) + a = 0.8 hydrofoil. 
Comparison between nonlinear Euler computations and experimental 
measurements from Shen and Dimotakis at four degrees angle of attack. 
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Fig. 6 Mid-chord cavitation: Comparison of pressure distribution be
tween nonlinear Euler computations and experimental measurements 
of Shen and Dimotakis for NACA66(MOD) + a = 0.8 airfoil at one degreee 
angle of attack. 

minimum in the Cp distribution and the ensuing pressure rise 
is neither confirmed nor denied by the experimental data be
cause no pressure taps were located in this region. However, 
it is generally expected that such a minimum will be observed 
(Shen and Dimotakis, 1989). Overall, these results indicate that 
the model provides a reasonably accurate prediction of the 
cavitation region for these experimental conditions. 

Figure 5 shows the calculated lift coefficient as a function 
of the cavity length for the above airfoil at four degrees angle 
of attack. The calculated coefficients agree quite well with the 
experimental measurements, although the computations slightly 
under-predict the increase in the measured lift in the presence 
of cavitation. Both the experiments and the predictions, how
ever, show that the lift increases with increasing cavity length, 
as expected. 

Mid-chord Cavitation Prediction 
Existing cavitation models usually pre-specify a cavity in

ception point, such as the leading edge or the minimum pressure 
location in the noncavitating solution. With a marine propeller 
operating at its design point, the shape of the pressure loading 
on the blade section generally resembles a rooftop with the 
minimum pressure, and hence the cavitation location, occur

ring around mid-chord. The absence of a distinct minumum 
pressure location makes it difficult to specify a cavitation in
ception point accurately. Mid-chord cavitation is therefore 
difficult to predict in codes based on potential theory. 

In the Euler analysis, such a pre-specification of the cavity 
inception point is not needed and the prediciton of mid-chord 
cavitation becomes straightforward. Mid-chord cavitation is, 
in fact, predicted rather well by our model as is demonstrated 
by comparison with the measurements of Shen and Dimotakis 
(1989). 

Shen and Dimotakis (1989) generated mid-chord cavitation 
on the NACA66(MOD) + « = 0.8 foil, by testing the airfoil at 
one degree angle of attack and a Reynolds number based on 
chord length of 3 x 106. The noncavitating pressure distribution 
for this case, shown in Fig. 2, has been discussed above. The 
comparison between predictions and experiments for the mid-
chord cavitation condition are given on Fig. 6. The predictions 
show quite good agreement with the experiments both with 
respect to the location of the cavity inception point, and with 
respect to the length of the cavity. In addition, the pressure 
distribution over the remainder of the airfoil is in good agree
ment with the experiments, again suggesting that the shape of 
the mid-chord cavity is well predicted. The expected stagnation 
pressure at the termination of the mid-chord cavity is also 
apparent in the calculate pressure distribution even though it 
cannot be clearly resolved in the experiment because of the 
finite number of pressure taps and the resulting uncertainty in 
the location of the cavity termination point. This capability 
for predicting mid-chord cavitation represents an important 
advantage of the Euler analysis over potential flow analyses. 

Cavity Length Predictions 
Each of the above cavitation predictions (Figs. 3-6) include 

comparisons of both the cavity length and the airfoil pressure 
distribution with the data of Shen and Dimotakis (1989). There 
exist few other cavitation measurements that characterize the 
pressure distribution over the entire airfoil. A limited number 
of cavity length measurements have, however, been reported. 
In the present section, we compare cavity length predictions 
with the data of Shen and Peterson (1978) and Dong (1983). 

Dong (1983) reported experimental measurements of the 
cavity length on a NACA16009 hydrofoil for two incidence 
angles a = 3.6 deg and 4.6 deg. The relationship between the 
cavitation number (a) and the cavity length as a fraction of 
chord (l/c) is presented in the form of curves of a/a versus // 
c. We compare our computational predictions with these meas
urements on Fig. 7. The computations agree quite well with 
the experiments when the cavitation length is less than about 
40 percent chord. For cavities longer than this, the predictions 
underestimate the length by a larger and larger amount. Part 
of this discrepancy may be due to unsteadiness in the closure 
region of these larger cavitation bubbles. The general trends 
of the experimental behavior are, however, well predicted by 
the Euler analysis. 

Shen and Peterson's experiments were performed on a pitch
ing Joukowski airfoil to study the effects of airfoil motion on 
cavitation inception. Although their emphasis is on pitching 
airfoils, they also reported cavity length measurements at zero 
reduced frequency for two angles of attack. The zero frequency 

' measurements were reported at a cavitation number a = 1.13 
for angle of attack of 3.8 and 4.3 degrees. These two cavity 
length measurements are compared with computational pre
dictions from the present method in Table 1. The measured 
cavity lengths for these two angles of attack are approximately 
25 percent and 40 percent chord respectively. The predictions 
agree with these measured cavity lengths to within about 10 
percent in both cases. At both angles of attack the cavity lengths 
are under-predicted, indicating that the predicted trend of cav
ity length with angle of attack is in good agreement with the 
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Fig. 7 Cavity length prediction: Comparison with experimental meas
urements from Dong at 3.6 and 4.6 degrees angle of attack. 
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Fig. 8 Comparison of pressure distribution/cavity geometry between 
nonlinear Euler analysis and potential flow for an NACA0012 cascade 
at five degrees angle of attack. The cascade spacing is 4 chord lengths. 

experiments. Taken together, the predicted cavity length com
parisons with the data of Shen and Dimotakis (1989), Dong 
(1983), and Shen and Peterson (1978) give reasonable confi
dence in the ability of the Euler formulation to provide ac
ceptable engineering predictions of cavitating flow fields. 

Cascade Computations 
Having presented validation comparisons of the Euler cav

itation model against several sets of experimental data, we turn 
now to looking at parametric predictions of the Euler model. 
Our first parametric study is of the size and shape of cavitation 

Table 1 Comparison of cavity length predictions with Shen 
and Peterson (1978) 

a 
3.8° 
4.6° 

Experiment 
0.25 
0.39 

.Computations 
0.22 
0.355 

0.50 

Fraction Chord (x/C) 

Fig. 9 Parametric study of the effect of cascade spacing using Euler 
analysis. NACA0012 cascade at cascade spacings = 1, 2, and 4 chord 
lengths', angle of attack = 5 deg Cp = 1.0. 

bubbles in a cascade. Because few measurements of cavitating 
flow in cascades have been reported, we compare the Euler 
cavitation predictions for this geometry with similar results 
based on the velocity potential equations. For these compar
isons, a two-dimensional potential flow code was used. This 
code is based on a panel method that involves the represen
tation of the potential function as a distribution of uniform 
sources and piece-wise linear vortices (Feng and Lee, 1990; 
Lee et al., 1991). The code has been extensively validated 
against a large variety of analytical solutions and experimental 
measurements in noncavitating flows and was extended to in
clude both linear and nonlinear cavitation prediction capabil
ities for single airfoils and cascades as part of the present work. 

Figure 8 presents predictions from these two cavitation 
models for a cascade with a spacing of 4 chord lengths. The 
figure shows the agreement between the results of the panel 
and Euler codes is, in general, quite good. The two pressure 
distributions and the resulting cavity profile shapes are quite 
similar to each other. The pressure rise around the airfoil 
leading edge is milder for the cascade than for an isolated 
airfoil resulting in a thinner cavitation bubble. Compared with 
an isolated airfoil case, the cavity length is about the same, 
but the maximum cavity thickness is some 40 percent less due 
to the cascade effect. 

For the panel method calculations the airfoil was represented 
by about 100 panels. Panel refinement showed this resolution 
was sufficient to obtain a panel-independent solution. The 
panel method, however, requires substantially less CPU time 
than the Euler code (which was similarly demonstrated to pro
vide a grid-independent solution on the 262x91 grid) as is 
typically the case between Euler and panel codes. The strength 
of the Euler method is in its ability to solve the direct problem, 
that is, requiring no presumptions about the cavity location, 
as well as in applying it to problems where velocity potential 
methods fail (as for example, in rotational flows) or experience 
difficulties (as for example, in mid-chord cavitation calcula
tions). 

To study the effect of cascade spacing on the cavitation 
performance, calculations were performed on the NACA0012 
airfoil for three cascade spacings ranging from 1 to 4, each at 
5 degrees of incidence. The predicted cavity profiles and pres
sure distributions are presented in Fig. 9. The pressure peak 
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Fig. 10 Parametric study of the effect of cavitation pressure using Euler 
analysis. NACA0012 isolated airfoil at five degrees angle of attack. 
Cp = 0.9, 1.0, and 1.2. 
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Fig. 11 Parametric study of the effect of angle and of attack using Euler 
analysis. NACA0012 isolated airfoil angle of attack = 4, 5, and 6 degs, 
Cp = 1.0. 

near the leading edge is further suppressed as the cascade 
spacing is decreased, so that both the cavity length and the 
cavity thickness are reduced. These results clearly show that 
both the cavity thickness and the cavity length are strongly 
affected by cascade spacing. 

to the existing potential flow models, and presents good po
tential to incorporate cavitation modeling in existing turbo-
machinery CFD codes. This makes the modeling of cavitation 
in complex geometries, rotational flows or three-dimensional 
flows more feasible. 

The numerical approach uses an artificial-compressibility 
procedure and pseudo-time stepping to solve the Euler equa
tions with a finite difference scheme. It requires no presump
tions of either the cavity length or the location of the cavity 
inception point". Although we have demonstrated that the linear 
formulation where the cavitation boundary condition is trans
lated to the body surface may lead to difficulty, this difficulty 
vanishes for the full nonlinear problem in which the cavitation 
condition is satisfied on the cavity interface. The nonliner 
calculation does, however, require re-gridding of the com
putational domain as the calculation converges. In the con
verged limit, the nonlinear problem satisfies both the cavity 
pressure condition and the velocity condition on the cavity 
interface. 

Numerical solutions have been obtained for a number of 
two-dimensional cavity flow problems, both for single airfoils 
and cascades. Comparisons with experimental measurements 
are presented for isolated airfoils for both pressure distribution 
and cavity length. The results of computations show good 
agreement with experimental measurements from several ex
periments. Since experimental measurements of cavitation in 
cascades were not available, comparisons are presented with 
panel code solutions based on velocity potential theory for this 
geometry. These comparisons are also in good general agree
ment. 

In addition to leading edge cavitation predictions, the Euler 
code also provides the capability for accurate predictions of 
mid-chord cavitation. This calculation is relatively difficulty 
to predict with potential flow codes because of the absence of 
a distinct cavitation inception point at which to begin the 
bubble. 

In summary, the Euler cavitation model provides good en
gineering predictions of cavitation on airfoils and in cascades. 
Further extensions from the current two-dimensional steady-
state analysis to three-dimensional and/or unsteady analyses 
should be relatively straightforward for the Euler formulation. 
In addition, this approach presents good potential for im
proved physical analysis of cavitation, including the effects of 
viscous forces which may lead to improved understanding of 
cavity formation. 

Effect of Cavitation Pressure and Angle of Attack 
The effects of varying cavitation pressure and angle of attack 

for an isolated airfoil were studied for a NACA0012 airfoil. 
The grid used in these computations is again similar to the 
grid shown in Fig. 1. The farfield boundary in the isolated 
airfoil cases was fixed at four times the chord length. Numerical 
calculations are conducted for the single airfoil at three cav
itation pressure levels and under three different angles of at
tack. The results are presented in Fig. 10 and 11 which include 
the pressure coefficients and the final converged cavity ge
ometries for each case. The results indicate, as expected, that 
the cavity grows with decreasing cavitation pressure and with 
increasing angle of attack. Cavity lengths ranging from 30 
percent to 70 percent chord are predicted for cavitation num
bers 0.9, 1.0 and 1.2 (Fig. 10). Increasing the angle of attack 
from 4 to 6 degrees likewise increases the cavitation length 
from 30 percent to 70 percent (Fig. 11). 

Conclusions 
Cavitation is a widely existing hydrodynamic phenomenon, 

that remains a persistent problem in hydraulic machinery de
sign. The numerical model developed in this paper is analogous 
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Origin and Decay of Longitudinal 
Vortices in Developing Flow in a 
Curved Rectangular Duct 
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Developing turbulent flow in a 90 deg curved duct of rectangular cross-section, and 
an aspect ratio of 6, was investigated. Mean-velocity and Reynolds-stress components 
were measured using a five-hole pressure probe and two-sensor hot-wire probes, 
respectively, in the boundary layers on the duct walls to document the pressure-
driven secondary motion and the formation of a longitudinal vortex near the corner 
on the convex wall. Special attention was paid to the three-dimensionality of the 
flow exiting the two-dimensional contraction of the wind tunnel in order to provide 
proper inlet boundary conditions for future computational work. The mean velocities 
and wall shear stresses were measured at seven sections and turbulence measurement 
were made at four sections. The data provide insights into the development of three-
dimensional turbulent boundary layers under the influence of strong streamwise 
curvature, both convex or concave, and attendant pressure gradients, and clearly 
elucidate the mechanism by which strong pressure-driven secondary motion results 
in a longitudinal vortex. 

Introduction 
Computational fluid dynamics (CFD) codes have come to 

occupy an important place among methods of analysis and 
design of fluids engineering systems and products. The vali
dation of such codes for turbulent flows relies on comparisons 
with carefully conducted experiments which highlight some 
particular fluid flow phenomenon or influence, the central 
uncertainty being the fidelity of the turbulence closure model 
employed in the code. Among the factors that have defied 
accurate representation in CFD codes are the influence of 
streamwise surface and/or streamline curvature, and the de
velopment and decay of secondary motion, by either the Reyn
olds stresses or cross-stream pressure gradients associated with 
curvature. Many experiments have been carried out to under
stand the basic mechanisms involved, and some of the data 
have been considered refined enough for use in CFD code 
validation. This paper describes the results of an experiment 
designed to elucidate the development of secondary motion 
and vortices in turbulent boundary layers on the walls of a 
curved rectangular duct. 

*Data have been deposited to the JFE Data Bank. To access the file for this 
paper, see instructions on p. 193 of this issue. 

'Present address: KRISO, Daejon, Korea 305-606. 
Contributed by the Fluids Engineering Division and presented at the Sym

posium on Data for Validation of CFD Codes, ASME Fluids Engineering Meet
ing, June 20-24, 1993, Washington, D.C., of THE AMERICAN SOCIETY OF 
MECHANICAL ENGINEERS. Manuscript received by the Fluids Engineering Division 
June 15, 1992; revised manuscript received May 13, 1993. Associate Technical 
Editor: Ho, Chih-Ming. 

Curved ducts of varying lengths and aspect ratios have been 
employed in the past to study the streamwise curvature effects 
and secondary motions. A review of the literature indicates 
basically two types of experiments. In one, developing flow in 
curved ducts of "large" aspect ratio has been measured to 
study the effect of convex or concave curvature on a nominally 
two-dimensional turbulent boundary layer. In some cases, at
tempts were made to remove the attendant pressure gradients 
and isolate the effects of curvature, while in others, the pressure 
gradient effects were not documented and were generally ig
nored. In some others, two dimensionality was either not doc
umented or the channel aspect ratio was not large enough to 
guarantee two dimensionality. Among experiments of this type 
are those of Smits et al. (1979), Gillis and Johnston (1983), 
Hoffmann et al. (1985), and Muck et al. (1985). These studies 
in two-dimensional boundary layers indicate that convex cur
vature has a stabilizing influence (reduces turbulent transport) 
whereas concave curvature has a destabilizing effect (increases 
the turbulence). The differences between the two are not equal 
and opposite, however, and no turbulence model has yet suc
ceeded in representing the effect of curvature with precision. 

The second type of experiments have been conducted mostly 
in ducts of square cross section, with short or long straight 
sections upstream of the curved portion, to study the evolution 
of the secondary motion in developing and fully developed 
flows. Representative experiments of this type are those of 
Humphrey et al. (1981), Chang et al. (1983), and Iacovides et 
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al. (1990). Measurements in fully developed flow in a square 
duct clearly reveal that the secondary motion arises from cur
vature-induced pressure gradients which drive low-momentum 
fluid from the outer (concave) wall on to the inner (convex) 
wall. Strong and prolonged curvature leads to the formation 
of longitudinal vortices on the convex wall. The principal dif
ference between developing (boundary layer) and fully devel
oped flow is that, in the former, the secondary motion is weaker 
and confined to the boundary layers. The effects of surface 
curvature on turbulence are obviously present in these flows 
as well but they are generally masked by those of the secondary 
motion. Also, the stress-driven secondary motion that is pres
ent in any straight upstream segment of the duct, interacts 
with the much stronger pressure-driven secondary motion in 
the curved section, resulting in a flow that is influenced by 
many factors. Because of these complexities, square-duct ex
periments have been used in CFD code validation to test not 
only the numerical capabilities but also to investigate the per
formance of turbulence models. 

Developing boundary-layer flow in curved rectangular ducts 
has not been studied to the same level of detail as that in a 
square duct. Some preliminary measurements were made in 
such a flow by Patel (1968) during the course of a study on 
curvature effects in nominally two-dimensional turbulent 
boundary layers. Mean velocity distributions measured at sev
eral spanwise stations in the boundary layers developing in a 
curved rectangular duct of aspect ratio six revealed not only 
Goertler type vortices on the concave wall but also much 
stronger longitudinal vortices on the convex wall some distance 
from the duct corners. These latter vortices are induced by the 
curvature-driven secondary motion. It was concluded that these 
vortices had to be reduced in order to realize two dimensionality 
of the flow along the duct centerplane. The authors are not 
aware of any other experiments in rectangular ducts of similar 
dimensions in spite of the fact they offer the opportunity to 
isolate and study, in a single simple geometry, two important 
flow features mentioned above, namely, the effects of stream-
wise curvature on the turbulence in a nearly two-dimensional 
flow, and vortex formation from a pressure-driven secondary 
flow. The latter feature is related to the so-called crossflow or 
open type of separation of a three-dimensional boundary layer. 
The present experiment is concerned with turbulent boundary 
layers developing in a curved rectangular duct. A computa
tional study was conducted in parallel (Kim, 1991) to guide 
the experiments. As a result, special attention was paid to the 
three-dimensionality of the flow on the flat walls downstream 
of the wind tunnel contraction to properly document the flow 
conditions ahead of the curved section. The data from this 
experiment have been compared, by Kim (1991) and Sotiro-
poulos and Patel (1992), with two different numerical methods. 
Therefore, the authors are well aware of the need to present 
the experiment results in a form that is convenient for testing 
and validating computational methods. 

The experimental facilities are described, along with the 
instrumentation and measurement procedures. Measurement 
uncertainties were determined by the method of Kline and 
McClintock (1953). The quantities measured include the dis
tributions of surface pressure and shear stress, the three com
ponents of the mean velocity vector, and all but one component 
of the Reynolds stress tensor. 

Experimental Apparatus 
The experiments were conducted in the curved-wall wind 

tunnel shown in Fig. 1. This open-circuit, suction-type wind 
tunnel has a 90 deg bend. A 0.25 in (6.35 mm) honeycomb 
and three 16-mesh screens are installed at the entrance, and 
these are followed by a two-dimensional lateral contraction 
with an area ratio of 6. The 5-ft (1.52 m) long straight upstream 
section provides a well-developed, flat-plate type turbulent 
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Fig. 1 Curved-wall wind tunnel; coordinates and location of measure
ment stations 

boundary layer before the start of the curved section. The 17-
ft (5.18 m) long downstream section enables the study of flow 
recovery following the curvature and attendant pressure gra
dients. The bend has an inner radius of 24 in (61.0 cm) and 
an outer radius of 32 in (81.3 cm). The tunnel cross section is 
rectangular, with a width of 8 in (20.3 cm) and a height of 48 
in (121.9 cm). Thus, the duct aspect ratio is 6. In the design 
of the tunnel, the dimensions were determined after careful 
consideration of previous work on curvature effects on tur
bulent boundary layers, and the need to isolate the effects of 
curvature in the flow along the tunnel mid-section from those 
of secondary motion and vortex formation at the corners. The 
resulting configuration is versatile insofar as these effects can 
be studied either in isolation or together. The present exper
iments exploit both capabilities. 

The boundary layers on all walls of the test section were 
tripped by a one-inch (25.4 mm) wide, #80 sandpaper, just 
downstream (12.7 mm) of the contraction. The air speed was 
controlled by adjusting the fan speed and monitoring the pres
sure difference along the contraction. A Pitot tube located in 
the freestream at the station marked Ul in Fig. 1 was used to 
calibrate the tunnel and establish the relation between the con
traction pressure drop and the velocity in the tunnel. The wind-
tunnel reference pressure had a maximum variation of 0.6 
percent during a normal measurement time. A HP-1000 mini
computer was used to control the experiments and collect the 
data, and an Apollo workstation was used for post-processing 
and plotting. A computer-controlled, two-axis, probe-travers
ing unit was installed for rapid and accurate positioning of 
pressure and hot-wire probes. The traverse had two stepping 
motors which drive Unislide gears with an accuracy of 1/4000 
in. The traversing unit was mounted on the top of the tunnel, 
and could be manually moved from one section to another 
along the tunnel. 
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Table 1 Pressure distribution along the tunnel symmetry plane* 

Upstream (straight) 
inside 

X 
-7.09 
6.34 
5.59 
4.84 
4.09 
3.34 
2.59 
1.84 
1.22 
1.13 
1.00 
0.88 
0.75 
0.63 
0.50 
0.38 
0.25 
0.13 
0.03 

Cp 
0.169 
0.141 
0.117 
0.106 
0.094 
0.086 
0.082 
0.074 
0.082 
0.078 
0.074 
0.074 
0.078 
0.078 
0.070 
0.066 
0.050 
0.034 
0.002 

* X denotes the dis 
Cp = (P-P„)/jpU 

O ltside 
X 

-7.09 
-6.34 
-5.59 
-4.84 
-4.09 
-3.34 
-2.59 

1.84 
1.22 
1.12 
0.99 
0.87 
0.74 
0.62 
0.49 
0.37 
0.24 
0.12 
0.03 

Cp 
0.185 
0.149 
0.125 
0.110 
0.102 
0.094 
0.090 
0.094 
0.106 
0.102 
0.110 
0.102 
0.114 
0.121 
0.133 
0.145 
0.169 
0.201 
0.217 

90 degree bend 
Convex 

X 
0.13 
0.25 
0.38 
0.50 
0.63 
0.75 
0.88 
1.00 
1.38 
1.75 
2.13 
2.50 
2.88 
3.25 
3.63 
4.00 
4.13 
4.25 
4.38 
4.50 
4.59 
4.66 -

ance from the Stan of bent 
o2, where P0 represents p 

Cp 
-0.062 
-0.105 
-0.145 
-0.189 
-0.229 
0.253 
0.265 
0.277 
0.221 
0.209 
0.265 
0.269 
0.249 
0.241 
0.261 
0.241 
0.229 
0.201 
0.173 
0.153 
0.129 
0.109 

along t 

Cnnrnve 
X 

0.06 
0.12 
0.21 
0.31 
0.40 
0.49 
0.59 
0.68 
0.78 
0.87 
0.96 
1.06 
1.15 
1.24 
1.34 
1.43 
1.53 
1.71 
1.81 
1.90 
1.99 
2.09 
2.18 
2.28 
2.37 
2.46 
2.56 
2.65 
2.74 
2.84 
2.93 
3.03 
3.12 
3.31 
3.40 
3.49 
3.59 
3.68 
3.78 
3.87 
3.96 
4.06 
4.15 
4.24 
4.34 
4.43 
4.53 
4.62 

te inside 

Cp 
0.241 
0.249 
0.265 
0.274 
0.285 
0.297 
0.304 
0.312 
0.301 
0.309 
0.312 
0.305 
0.312 
0.312 
0.301 
0.309 
0.285 
0.289 
0.309 
0.309 
0.309 
0.309 
0.310 
0.312 
0.305 
0.301 
0.301 
0.301 
0.285 
0.297 
0.281 
0.293 
0.285 
0.293 
0.301 
0.297 
0.301 
0.301 
0.297 
0.297 
0.285 
0.285 
0.281 
0.281 
0.249 
0.257 
0.205 
0 193 

Downstream (straight) 
fn ide 

X 
4.78 
4.88 
5.00 
5.13 
5.25 
5.38 
5.50 
5.63 
5.75 
5.88 
5.97 
6.59 
7.34 
8.09 
8.84 
9.59 

10.34 
11.09 
11,84 
12.59 
13.34 
14.09 -
14,84 -
15.59 -
16.34 -
17.09 -
17.84 -
18.59 -
19.34 -
20,09 -
20.84 -
21,59 -
22.34 -
23.09 -
23.84 •-
24,59 -
25.34 -
26.09 -
26.87 -

convex wall, divided 
essure at the inside wall a X=0. 

Cp 
-0.089 
-0.070 
-0.046 
-0.034 
-0.018 
0.006 
0.006 
0.006 
0.010 
0.010 
0.010 
0.006 
0.022 
0.038 
0.050 
0.058 
0.070 
0.078 
0.082 
0.089 
0.129 
0.105 
0.109 
0.113 
0.113 
0.121 
0.093 
0.117 
0.129 
0.145 
0.149 
3.157 
3.161 
3.173 
3.169 
J. 185 
).189 
),193 
3.197 

byH. 

On side 
X 

4.71 
4.82 
4.95 
5.07 
5.20 
5.32 
5.45 
5.57 
5.70 
5.82 
5.95 
6.57 
7.32 
8.07 
8.82 
9.57 

10.32 
11.07 
11.82 
12.57 
13.32 
14.07 
14.82 
15.57 
16.32 
17.07 
17.82 
18.57 
19.32 
20.07 
20.82 
21.57 
22.32 
23.07 
23.82 
24.57 
25.32 
26.07 
26.82 

Cp 
0.189 
0.153 
0.129 
0.117 
0.098 
0.078 
0.066 
0.046 
0.026 
0.010 

-0.002 
-0.010 
-0.018 
-0.034 
-0.042 
-0.062 
-0.062 
-0.074 
-0.078 
-0.058 
-0.097 
-0.100 
-0.101 
-0.112 
-0.125 
-0.113 
-0.118 
-0.125 
-0.145 
-0.137 
-0.141 
-0.150 
-0.157 
-0.165 
-0.172 
0.181 
0.193 
0.193 
0.193 

Uniformity of the mean-velocity distribution at station Ul, 
located 2 ft (61.0 cm) downstream of the turbulence stimulator, 
was ascertained by traversing a Pitot tube. The velocity was 
uniform outside the boundary layers, with a deviation from 
the mean less than 1.0 percent. As will be discussed more fully 
later, the two-dimensional contraction introduced secondary 
motion in the boundary layers on top and bottom flat walls 
of the tunnel. However, the boundary layers on the wider, 
vertical walls were two dimensional over the middle 32 in (81.3 
cm). 

Figure 1 also shows the coordinates employed in the pres
entation of experimental results; Xis the longitudinal distance 
along the inside wall, Yis the outward distance from the inside 
wall, and Z is the distance measured downward from the top 
inside corner. The origin of the coordinate system is located 
at the start of the bend at the top inside corner. The mean and 
fluctuating velocity components in the (X, Y, Z) directions 
are ([/, V, W) and (u, v, w), respectively. Thus, Urepresents 
the longitudinal component whose direction follows the duct 
curvature, while Fand Wave the transverse components. The 
reference station Ul is at X= -4.5 H, upstream of the bend, 
H being the duct width. Station U2 is at X= -0.5 H, just 
inside the influence of the pressure gradients induced by the 
duct curvature. The following three stations are located at 15, 
45, and 75 degrees along the bend, and are so designated. Two 
downstream stations, Dl and D2 which are 0.5 H, 4.5 H 
downstream of the bend, respectively, were selected to study 
the recovery of the flow following the curvature. In the fol
lowing discussion, all velocity components are nondimension-
alized by the freestream velocity (16 m/s) at station Ul. 

Mean-Flow Measurements 
The mean-velocity field was measured with a five-hole pres

sure probe. Using this probe, it was possible to measure the 
three components of mean velocity at any location in the tunnel 
without yawing and pitching the probe. The overall diameter 
of the probe was 0.13 in (3.30 mm) and it had five 0.023 in 

(0.584 mm) holes: one on the flat surface facing upstream and 
four equally spaced on 45 deg facets. All pressure measure
ments were made with a Validyne pressure transducer (± 0.125 
psi range) which was calibrated against a micromanometer, 
having a resolution of 0.001 in (0.0254 mm) of alcohol. The 
pressure measurements were accurate to within 2 percent of 
the freestream dynamic pressure. 

The five-hole pressure probe was calibrated in the freestream 
at station Ul against a standard Pitot tube, following Treaster 
and Yocum (1979). A specially designed probe-holder base 
enabled the probe to be yawed and pitched in desired positions, 
in the range ±35 deg, in 5 deg intervals. For each pressure 
measurement, a sampling rate of 200 samples/second and a 
measuring period of 3 seconds was used by suitably program
ming the A/D converter of the computer. Thus, the mean 
pressure was obtained by averaging 600 samples. The pressures 
measured by the probe were converted to the calibration coef
ficients defined in Treaster and Yocum, and the calibration 
charts were used, with fourth-order polynomials for interpo
lation, to calculate the yaw and pitch angles, velocity mag
nitude, and static pressure. The velocity components were then 
calculated. Errors from the approximation of the calibration 
chart were estimated to be 1 deg in flow angle when the yaw 
and pitch angles were less than 25 deg. Most of the measure
ments were found to be within this range. The overall uncer
tainty in the mean-velocity measurements was estimated to be 
1.5 percent in the streamwise component (t/) and 3 percent 
in the transverse components (V and W) of the reference ve
locity. 

Measurement of Wall Pressure and Wall Shear Stress 
The pressure distribution on the tunnel walls was measured 

by pressure taps. Along the centerline of the side walls of the 
wind tunnel, 80 taps were placed on the inside wall and 106 
taps were placed on the outside wall. The location of these 
taps and the measured pressures are given in Table 1 and plotted 
in Fig. 4. Additional pressure taps were provided in the span-
wise direction at several streamwise sections but these were 
used mainly to check the flow symmetry about the tunnel 
centerplane. 

The wall shear stress was determined by employing two 
different types of pressure probes at the same location. A total-
head tube with inner and outer diameters of 0.047 and 0.065 
in (1.19 and 1.65 mm), respectively, was used in the manner 
of a Preston tube. However, the static pressure at the same 
point was obtained from a separate static-pressure probe. The 
difference between the readings of the two probes was used, 
along with the Preston-tube calibration of Patel (1965), to 
obtain the wall friction coefficient. This method of determining 
the static pressure (instead of using wall taps) enabled wall-
friction measurements to be made rapidly and at closely-spaced 
positions. However, it should be pointed out that, due to the 
relative insensitivity of the probes to yaw, this method gives 
the magnitude of the wall shear but not its direction. This 
limitation should be kept in mind in future use of these data. 

Turbulence Measurements 
A constant-temperature hot-wire system was employed to 

measure the fluctuating velocity components. At the beginning 
of this study, it was thought that a triple-sensor probe could 
be used to obtain all the necessary information in a single set 
of experiments. However, more detailed consideration of the 
flow to be measured soon led to the conclusion that commer
cially available triple-sensor probes were much too large to 
properly resolve the near-wall flow. Therefore, a miniature 
two-sensor (X-wire) probe, whose overall size is less than 2 
mm (DISA 55P61), was employed. The probe had a 1.25-mm 
long, 5-mm diameter platinum-plated tungsten wires, giving a 
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Fig, 2 Top-wall boundary layer at station U1 

length-diameter ratio of 250. It was used in two orientations, 
with the sensors in the XY plane, and then in the XZ plane, 
to obtain all except one ( —FvP) component of the Reynolds 
stress tensor. Each sensor was connected to a DISA 55P10 
Constant Temperature Anemometer bridge operating with an 
overheat ratio of 1.5. The probe was speed-calibrated to obtain 
the calibration constants before and after each experiment. 
This was intended to monitor the drift in the calibration due 
to variations in ambient temperature or deposits accumulating 
on the sensors. Since the wind tunnel is of the open-circuit 
type, temperature increases inside the tunnel were usually quite 
small (less than 2°C during a one or two hour period). How
ever, the temperature was monitored and corrections were 
made in the calibration. 

The modified King's law was used to relate the anemometer 
voltage E to the effective cooling velocity Ue: 

--A+B(Ue)" (1) 
T —T 

where Tw is the constant wire temperature, Ta is the ambient 
temperature, A and B are calibration constants, and n = 0.5. 
The instantaneous effective cooling velocity was converted to 
instantaneous in-plane velocity in the laboratory frame using 
the cosine law and a constant directional sensitivity coefficient, 
£ = 0.2, with cooling by the out-of-plane velocity component 
ignored. The main source of error comes from the out-of-
plane velocity cooling. The overall uncertainty in thejneasured 
Reynolds stresses was estimated as 5 percent in u2 and 10 
percent in other stresses. 

The data-acquisition procedure was similar to that used for 
the five-hole pressure probe. Voltages from the hot-wire sen
sors and the tunnel temperature were sampled simultaneously 
for 5 seconds with a sampling rate of 200 Hz, and processed 
to determine the instantaneous velocity components and then 
the Reynolds stresses. Although the hot-wire measurements 
also yielded the mean-velocity components, the measurements 
with the pressure probe are considered more reliable. There
fore, only the pressure-probe data are presented for the mean 
velocities. 

Influence of Wind-Tunnel Contraction 
From the measurements at station Ul it became apparent 

quite early that the flow on the flat top (and bottom) wall was 
influenced by the two-dimensional contraction of the wind • 
tunnel. Figure 2 shows selected data. It is clear that a pair of 
vortices exists inside the top-wall boundary layer, rendering it 
highly three dimensional. As observed by Mokhtari and Brad-
shaw (1983), these vortices are induced by the lateral pressure 
gradients that exist on the top wall of the wind-tunnel con
traction. These gradients deflect the slow-moving boundary-
layer fluid toward the vertical centerplane more strongly than 
the inviscid fluid outside the boundary layer, inducing a pres
sure-driven secondary motion. The secondary flows collide at 
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Fig. 3 Measured friction coefficients on the top wall 
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Fig. 4 Pressure distribution along the curved walls in the symmetry 
plane 

the vertical centerplane of the top wall, forming a pair of 
vortices with the common flow between them away from the 
wall. However, in the present case, the roll-up process was not 
sufficiently advanced to form vortices with identifiable cores 
of velocity defect. 

The data in Fig. 2 indicate that the secondary flow magnitude 
reaches almost 5 percent of the freestream velocity, while the 
longitudinal velocity contours indicate that the boundary layer 
thickness at the center of the top wall is almost three times 
that near the corners. This extraordinarily thick boundary layer 
leads to the large vertical component of velocity near the center. 
The contours of turbulent kinetic energy and the Reynolds 
shear-stress — WW, which is principally responsible for the 
transport of ^-momentum in the vertical direction, normal to 
the top wall, indicate that the flow is approximately symmetric 
about the vertical centerplane. A more careful study of the 
secondary motion and the various contours indicates that there 
may be yet another pair of counter-rotating vortices forming 
under the primary pair. These secondary vortices produce a 
flow towards the wall in the centerplane and lead to increased 
axial velocity, turbulent kinetic energy, and Reynolds stress 
very close to the wall. 

The downstream persistence of the top-wall vortices ob
served in Fig. 2 can be clearly seen from the friction coefficients 
measured at stations Ul, U2, 15, and 45, which are shown in 
Fig. 3. First of-all, the higher friction coefficient near the 
centerplane at Ul is indicative of a local flow divergence as
sociated with the counter-rotating secondary vortices men
tioned above. By station U2, these secondary vortices have 
disappeared and the friction distribution is that associated with 
only the primary pair, the low friction at the centerplane being 
due to the flow convergence induced by the primary pair of 
vortices. There exists some asymmetry due to the fact that 
some radially inward pressure gradient exists at station U2 (see 
Fig. 4). This asymmetry is obvious at station 15, where the 
curvature related radial pressure gradient drives low-momen
tum fluid in the top wall boundary layer from the inside to 
the outside corner. The effect of the thickened boundary layer 
(due to the vortices) is still in evidence at station 15 in the dip 
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Fig. 5 Measured mean velocity field 

in the friction coefficient. By station 45, however, there is little 
evidence of the contraction-induced vortices. 

Measurements similar to those shown in Fig. 2 were made 
along the vertical side walls of the duct at station Ul. These 
revealed that the boundary layers on the two walls were es
sentially two dimensional except for a short region close to the 
corners. The boundary layer thickness at midspan of the ver
tical walls was QMH (Re6= 18,000), and wall friction coef
ficient (Cf=2Tw/pUl) was 0.0038. While these two integral 
parameters are usually sufficient to prescribe the initial con
ditions (under the assumption of a flat-plate boundary layer) 
for the calculation of the subsequent flow, the observed con
traction-induced vortical flow should be taken into account to 
properly model the flow in the corners. The measured data 
can be used to construct realistic inlet condition for such com
putations. 

Results and Discussion 
The experiment was conducted with the freestream velocity 

U0, outside the boundary layers at the reference section Ul 
(Fig. 1), of 16 m/s. In the presentation of results, this is used 
as the reference velocity. With these values, the duct Reynolds 
number, U0H/v = 224,000 and the corresponding Dean num
ber (U0Rh/v)[Rh/(Ri + 0.5H)]0-5 = 95,000, where the hydraulic 
radius Rh = 0.851 H and the inner radius of the duct 7?, = 3.0 
H. However, it should be noted that these are not particularly 
meaningful for the developing boundary layers that are of 
interest in the present situation. Instead, it is the state of the 
boundary layer in the upstream section, at station Ul, say, 
that determines the effects of surface curvatures and pressure 
gradients that are imposed on the boundary layers as they 
negotiate the curve and recover from it. At this station, the 
boundary layers on the vertical walls have essentially the same 
characteristics as they have developed in identical circumstan
ces. Measurements indicated that, at the center of these walls, 
the momentum-thickness Reynolds number, Rg=U06/v, was 
1650. The boundary layers on these walls were found to be 
essentially two-dimensional in regions out of the immediate 
influence of the corners. However, as described above, the 

too ct too ct too a too ct too a too ct 

Station U2 Stat ion t5 Stotion 45 Station 75 Stat ion Dl Station D2 

Fig. 6 Wall shear stress distributions 

boundary layers on the top and bottom walls are not two 
dimensional. Measurements were made in the upper half of 
the duct cross section, the symmetry of flow in the upper and 
lower halves of the duct being assumed following some pre
liminary measurements. 

Mean Pressure and Velocity Fields. The pressure distri
bution {Cp = 2(p -p0)/pul) along the channel walls in the plane 
of symmetry, given in Table 1, is presented in Fig. 4, where 
p0 represents pressure at (0, 0, 3H) and U0 is the freestream 
velocity at Ul. The pressure gradients induced by the curvature 
are clearly seen. On the convex side, the boundary layer is 
subjected to a favorable pressure gradient starting upstream 
of the bend, and this is followed by an adverse gradient around 
the bend exit. The boundary layer on the concave side is sub
jected to pressure gradients of similar magnitude but opposite 
signs. 

The mean-velocity field measured by the pressure probe is 
shown in Fig. 5. The longitudinal vorticity shown in Fig. 5(b) 
was obtained by numerical differentiation of the measured 
secondary velocity components and non-dimensionalized by 
the freestream velocity at Ul and the duct width H. The top-
wall vortices are clearly seen, particularly in the vorticity plots, 
at station U2 and they are still in evidence at station 15. There
after, they are smeared out by the curvature-driven secondary 
motion, which is directed from the outer to the inner corner. 
The experiments indicate that, near the center of the duct, the 
boundary layers remain relatively thin and there exists an in-
viscid region in which the velocity gradient is small. Near the 
top wall, however, the boundary layer on the convex wall 
thickens as it is fed by fluid coming down from the top-wall 
boundary layer, and by station 75, there appears a longitudinal 
vortex with its core approximately at Y/H=0.08 and Z/ 
H= 0.7. Vortical flow now begins to fill the top of the channel. 
The vortex on the convex wall grows in size and is pushed 
away from the top. The vortex persists even after the end of 
curvature. At station D2, the core of the vortex, identified by 
low axial velocity and high longitudinal vorticity, is located 
around Y/H=0A7 andZ/H= 1.0. Previous studies of the flow 
in curved ducts of square section, mentioned in the Introduc
tion, indicated two vortices forming near the convex wall, 
colliding at the centerline, and lifting from the wall. In the 
present case, however, the longitudinal vortex develops without 
interference from a similar vortex in the other half of the duct. 

The wall shear stresses are shown in Fig. 6. A circle, a triangle 
and a square denote the values on the convex, concave and 
top walls, respectively. As expected from the longitudinal ve
locity contours of Fig. 5(a), flow symmetry about the vertical 
centerplane is observed until station U2, where the radial pres
sure gradient begins. In general, near the duct center, the 
friction coefficient on the convex wall first increases due to 
the favorable longitudinal pressure gradient and then decreases 
due to the adverse pressure gradient near the exit. The opposite 
is found on the concave side. The top-wall vortices are seen 
at station U2 through the dip in the friction distribution. The 
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Fig. 7 Longitudinal velocity (U) profiles 

data also show similar dips on both vertical walls near the 
corners. Unfortunately, the resolution of the velocity meas
urements was not sufficient to identify these with corner vor
tices. As the flow progresses downstream, the most prominent 
feature of the measurements is a significant drop in the friction 
coefficient on the convex wall. This begins around station 45, 
where the minimum is located at Z/H= 0.45, and moves down
ward to about Z/H= 1.5 at station D2. At the last three sta
tions, this minimum in friction is preceded by another local 
minimum, and the entire spanwise distribution acquires a char
acteristic shape. This shape of the friction distribution is as
sociated with the flow convergence and divergence induced by 
the longitudinal vortex. Yet another interesting feature of the 
measured friction coefficients is found on the top wall near 
the junction with the convex wall at station D2. The pro
nounced trough in the local friction distribution suggests the 
development of yet another vortex which arises from the strong 
inflow towards the convex wall. The corner vortex rotates in 
a sense opposite to that of the vortex on the convex wall 
described above. 

Figure 7 shows the profiles of the longitudinal velocity com
ponent ((7) across the duct, from the inner to the outer wall, 
at six positions: Z/H=0.25, 0.50, 0.75, 1.00, 2.00, and 3.00, 
the last being the symmetry plane of the duct. These results 
represent only a small sample of the total database. The cor
responding distributions of the transverse components (V and 
W) are not shown. The velocity profiles at stations Ul and 
U2 show flat-plate type boundary layers on the vertical walls 
except at Z/H=0.25, which is under the influence of the sec
ondary flow on top wall. The longitudinal velocity outside the 
boundary layers at station 45 decreases from the inner to the 
outer wall, as required by inviscid-fluid theory. Further down
stream, at stations Dl, much fuller longitudinal velocity pro
files are observed in the outer-wall boundary layer in the two-
dimensional flow region near the duct center. This is consistent 
with the effect of concave curvature, which acts to increase 

turbulent mixing, and leads to increased velocity close to the 
wall and larger friction. This effect persists on the straight 
wall, even after removal of the curvature. The longitudinal 
vortex on the convex wall is seen through the profiles of U at 
Z/H= 0.50 and 0.75 at station Dl, and at Z/H=0J5 and 1.00 
at station D2, which depict the two peaks commonly observed 
in vortical flows. 

Reynolds-Stress Distributions. The effect of surface cur
vature on the boundary layers on the convex and concave walls 
in the two-dimensional flow near the plane of symmetry of 
the duct, and the growing three-dimensionality associated with 
the vortex on the convex wall were already evident from the 
mean-velocity field. These two effects combine to produce a 
quite complex distribution of the Reynolds stresses. The hot
wire measurements were made at four streamwise stations and 
included all except one (-Ww) component of the Reynolds 
stress tensor. Figure 8 shows the turbulent kinetic energy (k) 
and the five Reynolds stresses. At each station, profiles are 
shown at six sections (Z/H= 0.25-3.00) across the duct. 

Figure 8 shows that, at the reference station Ul, there are 
thin, two-dimensional boundary layers on the inner and outer 
walls and a large in viscid core. The vortex pair on the top wall 
is not seen at Z/H=0.25. Within the boundary layers in the 
central portion of the duct (Z/H= 0.75-3.00, say), the kinetic 
energy and the primary Reynolds shear stress - uv behave as 
expected, with peak values near the wall. The shearing stress 
-ww is small, there being no transport of momentum in the 
Z-direction if the flow is two-dimensional, the structure pa
rameter («j= -uv/k) attains a value of about 0.3, which is 
generally accepted for fully turbulent flows, and the normal 
stresses are anisotropic in the same way as in thin two-dimen
sional boundary layers, i.e., uu>Ww>Uv. The standard flat-
plate turbulent boundary layer behavior over much of station 
Ul and the details of the flow near the top provided in a 
previous section are sufficient to specify proper inlet conditions 
for a CFD code applied to calculate the subsequent develop
ment of the flow through the duct. 

Comparison of the profiles of k and — «t> at stations U2 
and 45 near the symmetry plane show the direct effects of 
surface curvature. At U2, the profiles near the two walls are 
quite similar, but at 45, they develop marked differences. Both 
k and —Uv are suppressed near the convex wall and greatly 
amplified near the concave wall. For example, at station 45, 
Z/H= 3.00, the peak value of k near the concave wall is almost 
three times that near the convex wall, and there is a similar 
difference in the shear stress. It is again confirmed that pro
duction of the turbulence energy is enhanced by the concave 
curvature, while it is suppressed by convex curvature. How
ever, as discussed in Richmond and Patel (1991), most com
monly used two-equation turbulence models fail to predict this 
asymmetric behavior of turbulence production in curved wall 
boundary layers. The measurements of k and the individual 
Reynolds stresses at the last station, Dl, which is just down
stream of the bend in the duct, continue to indicate the cur
vature effects described above in the boundary layer near the 
duct center (Z/H= 2.00-3.00, say). 

Although the evolution of the longitudinal vortex on the 
convex wall near the top of the duct is evident from the tur
bulence profiles at station Dl in the region Z/H= 0.50-1.00, 
the global features of the vortex are more conveniently visu
alized from the contour plots shown in Fig. 9. It is clear that 
the two shear stresses change sign in the region where the 
longitudinal velocity contours are most distorted, indicating a 
more vigorous transport of momentum and energy by the 
vortex. A high level of turbulent kinetic energy is also observed 
near Z/H=0.825, because the boundary layer fluid near the 
convex wall is lifted outward by the vortical flow. The distri
butions shown in Fig. 9 are typical of a longitudinal vortex 
inside a boundary layer. 
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Concluding Remarks 
Measurements in developing turbulent boundary-layer flow 

in a 90 deg curved duct of rectangular cross section with an 
aspect ratio of six were presented and discussed. Despite the 
relatively simple geometry this flow offers two challenges to 
physical and computational modeling. First, there is an ex
tensive region of nominally two-dimensional boundary layers 
subjected to strong streamwise curvatures and related pressure 
gradients, and second, the data document the development of 
the pressure-driven secondary motion in the corner region which 
eventually leads to the formation of a longitudinal vortex on 
the convex wall. The duct aspect ratio was such that these two 
features develop more or less independently, without inter
action. Together, these features of a complex turbulent flow 
present a formidable challenge to any CFD code that claims 
a high level of generality. Calculations carried out by the au
thors (Kim, 1991; Sotiropoulos and Patel, 1992) suggest that 
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prediction of the details of such a flow require methods that 
solve the Reynolds-averaged Navier-Stokes equations with an 
advanced turbulence model capable of resolving the joint ef
fects of curvature and pressure gradients. 

The data were obtained in such detail, with respect to the 
location of measurement points, that they can be used to test 
or validate computational methods and turbulence models. In 
particular, special care was given to documenting the flow at 
an upstream section so that realistic upstream boundary con
ditions could be provided for computational studies. 

Data Bank Contribution 
Data from this experiment have been deposited in the JFE 

Data Bank. A fuller account of the data is given in the paper 
"An Experimental Study of Boundary Layer Flow in a Curved 
Rectangular Duct," presented by the authors at the 1993 Fluids 
Engineering Conference, FED-Vol. 146, Data for Validation 
ofCFD Codes (D. Goldstein, D. Hughes, R. Johnson and D. 
Lankford, eds.) pp. 13-28. Annotated text of the conference 
paper is included in the Data Bank to guide interpretation and 
use of the data. 
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Fluid Flow Behavior in the Curved 
Annular Sector Duct 
A numerical analysis of the axial and secondary flow behavior in a curved annular 
sector duct is presented in the paper. The flow is considered to be fully developed 
laminar flow with constant physical properties. Five parameters have been identified 
as major variables in controlling the flow behavior. The study indicates that with 
a moderate Dean number and when the sector angle is smaller than -K/2, only two 
vortices will appear in the cross section of the curved annular sector duct. When 
the sector angle is larger than -K/2, the vortex structure can be very complex, and 
is often determined by other parameters, especially by the angle between the annular 
sector duct centerline and the curvature radius direction. The friction coefficient of 
the curved annular sector duct is affected mainly by the radius ratio, curvature, and 
axial pressure gradient. The radius ratio of the inner/outer walls can affect the 
vortex structure only when the radius ratio is very small. When the radius ratio is 
larger than 0.6, the friction coefficient is only slightly higher than that of a straight 
annular sector duct. Nevertheless, for the small radius ratio duct, the friction coef
ficient can be tripled, as compared with a straight annular sector duct. Although 
the holding pipe curvature and the axial pressure gradient cannot significantly change 
the vortex structure of the secondary flow, they can however, remarkably increase 
the friction coefficient by increasing the velocity gradient near the solid boundary. 

Introduction 
Curved annular sector ducts are commonly applied in the 

design of multi-channel compact heat exchangers, evaporators, 
and condensers being used in the food, pharmaceutical and 
chemical industries. For these applications, several annular 
sector ducts are combined side by side to form a circular hold
ing pipe, which is bent in the shape of a coil. Much research 
has been conducted on the straight annular sector duct. Spar
row et al. (1964) analytically obtained the axial velocity dis
tribution and the friction factor for fully developed laminar 
flow through an annular sector duct. Niida (1980) studied the 
same problem analytically and expressed his solution in terms 
of an equivalent diameter. However, to the authors' knowl
edge, few information is available in the open literature for 
laminar flow in a curved annular sector duct. 

In a curved duct, the centrifugal force on the order of wVi? 
acts on the fluid particles, forcing them to flow outward 
from the center of the curvature. Due to the nonuniform axial 
velocity distribution in the cross section, secondary flow is 
generated by the unbalanced centrifugal force and the pressure 
gradient. The secondary flow in the curved duct enhances the 
flow resistance, which results in a large pressure drop along 
the curved duct when compared to a straight duct. Numerous 
studies have been conducted on curved ducts. The early stages 
of study on curved duct flow relied heavily on experimental 
tests. Dean (1927) was the first to achieve significant progress 
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in theoretical study of the curved duct. In recent years, Trues-
dell and Adler (1970), Akiyama and Cheng (1971), Austin and 
Seader (1973), Collins and Dennis (1975), Dennis and Ng (1982), 
and Berger et al. (1983) have numerically solved the fully de
veloped axial and secondary flow in a curved duct with a 
circular cross section. Cheng and Akiyama (1970), Mori, et 
al. (1971), Joseph et al. (1975), Cheng et al. (1976), Ghia and 
Sokhey (1977), Mille et al. (1985), and Kumar et al. (1989) 
have studied fully developed flow in the curved duct with a 
rectangular cross section. Thomas and Walters (1965), Takami 
and Sudou (1984), and Topakoglu and Ebadian (1985, 1987) 
have studied fully developed laminar flow in a curved duct 
with an elliptical cross section. Ghia et al. (1987) studied the 
curved ducts of square and polar sector cross sections by multi-
grid technique. They pointed out that there exists significant 
difference between the flow patterns of the square and annular 
duct. However, only limited cases of the annular sector duct 
(small 0 and constant, a - w/2, correspond in this paper) 
have been discussed in their paper. These previous studies 
indicate that the secondary flow pattern strongly depends on 
the cross section configuration of the curved duct. There are 
two major differences between the curved annular sector duct 
and the curved duct studied previously. First, the curved an
nular sector duct has both convex and concave boundaries, 
while other curved ducts have convex boundaries only. Second, 
in the majority of cases, the symmetry line of the annular 
sector does not coincide with the direction of the centrifugal 
force. This study demonstrates that these two differences can 
profoundly change the secondary flow pattern in the curved 
annular sector duct. 
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The Governing Equations 
Two geometry parameters are needed to determine the ge

ometry of a straight annular sector duct: the sector angle and 
the radius ratio of the inner and outer walls. However, for a 
curved annular sector duct, the relative location of the sector 
duct to the curvature direction of the holding pipe also becomes 
a critical parameter. Figure 1 illustrates the definition of a 
curved annular sector duct, where Rj and R0 indicate the radius 
of the inner and outer walls, respectively; a is the relative 
location of the curved annular sector to the symmetry center-
line; fi represents the angle of the annular sector; and K and 5 
are the curvature and the centerline of the holding pipe, re
spectively. 

To make the governing equation more general, the following 
dimensionless parameters are introduced: 

r* s* u*R0 
r = —, s = — , « = 

*«, Rn " 

v'R„ 

w*Rn 
w = - p=p*/(pv2/R2

0), E = KR0, r» = Ri/R0 (1) 

2tt{R2
0 •Rft 

dh = Dh/(2R0),Dh = 
\2(R0'R,)+Q(R0 + R,) 

(2R0-R,) 

fi<2ir 

Q = 2ir 

De = 
dpi R\ 
ds* *2 

V p 
(K'Ro) ' ds 

where the variables with superscript ( ) indicate dimensional 
variables. Subscriptsi and o, indicate the inner and outer walls, 
respectively, v, p, andp represent the kinematic viscosity den
sity and pressure of the fluid. Dh and dh indicate the dimen
sional and nondimensional hydraulic diameters, and De 
represents the Dean number. The governing equations in a 
toroidal pipe can then be written as: 

[du 1 d(rv) 

r 38 + r dr •-Q (2) 

annular sector 
ductor 

symmetry center line 

curvature 
direction 

holding pipe 

Fig. 1 Definition of the curved annular sector duct and the coordinate 
system 

1 d(uu) 1 d(rvu) 1 dp d2u 1 du 1 d2u 
r 3d r dr -rye+-d?+7Tr+?W2 + uQ-
+ w2coe sin(0 + 60) + coe cos(0 + 0o)/3 

JL^H E 1 d2v 1 dv 
r2 302 + r2+rdr3d r2 86 

1 d(uv) 1 d(rvv) dp 1 d2v 1 dv d2v u2 

(3) 

r 36 r dr 

- v^we cos(0 + d0) + coe sin(0 + 0o)/3 -
1 dv 32v 1 32(ru) 

r dr dr2 r2 dddr 

(4) 

1 d(uw) 1 d(rvw) 
r 38 + 7 dr 

De J_a^w dhv ]_ dw_ 

' ^ r 2 de2+3r2+'r dr' 
+ ' „ ' = -co - F + — -T?T + ZZ-T + - — + 2WQ 

1 a 1 d 
+ -— [weco sm(6 + 60)]--—[weru cos(d + 60)], (5) 

where the angle 60 is applied to consider the relative location 
of the annular sector duct. 

AE,A N> Ap, As, Aw 
a«, ar, as 

b 
De 
Dh 

dh 

f 
P 

P 
Q 
Ri 
Ro 
Re 

r, r 

r» 
S 
s 
* s 

U, V, W 

U , V , W 

u", v" 

— 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 

= 

= 

coefficients, Eq. (14) 
unit vectors in the d, r, and s direc
tions 
function, Eq. (15) 
Dean number, Eq. (1) 
hydraulic diameter [m] 
dimensionless hydraulic diameter 
friction coefficient 
dimensionless pressure 
pressure [Pa] 
function, Eq. (7) 
inner radius [m] 
outer radius [m] 
Reynolds number, Dhwb/v 
dimensional and dimensionless ra
dial direction coordinate 
radius ratio, R//R0 

source term, Eq. (13) 
axial coordinate 
dimensional axial coordinate 
dimensionless velocity components 
(«*, v*. w)/(v/R0) 
velocity components in the 9, r, 
and s directions [m s~'] 
predicted velocities, Eq. (15) 

Subscripts 

Superscript 

w0 = 
wb = 

a = 
P = 
T = 
e = 
6 = 

0o = 
K = 

M = 
V = 

P = 
<f, = 

II 
II 

C
3 

3 

C = 

I = 

0 = 

s = 

= 

dimensionless average axial velocity 
dimensional average axial velocity 
[ms- 1 ] 
angle, Fig. 1 
function, Eq. (8) 
coefficient, Eq. (14) 
dimensionless curvature 
angle, Fig. 1 
angle, Eq. (6) 
curvature [m_1] 
viscosity 
kinematic viscosity [m2 s~'] 
density [kg m~3] 
general variable, Eq. (16) 
annular sector angle, Fig. 1 
function, Eq. (9) 

curved 
inner 
outer 
straight 

dimensional 
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(6) 

(7) 

(8) 

(9) 
l-ercos(6 + 60) 

The boundary condition for Eqs. (2) to (5) is a non-slip 
condition for all solid walls. The friction factor,/, of the duct 
can be found by: 

fRe = 2dlDe/(wbe
i/2), (10) 

where the Reynolds number is defined by: 

Q = ew[- u sin(0 + 0O) + v cos(0 + 0O)] 

1 dv u du 

r30~7~a7 

1 

Re = = 2wbdh, 

and the bulk axial velocity, wb can be calculated by: 
i-\ nil n I 

wb = -^r,—jfz wRdRdQ 
"fl(l-r*2) 

(ID 

(12) 

Numerical Analysis 
The governing equations, Eqs. (2) to (5), are nonlinear par

tial differential equations, which can be expressed in the fol
lowing general form: 

19< (u<j>) 1 d(rv<j>) 

90 + r dr 

/ d 2 0 1 dc/> 1 d24>\ „ / ( „ N 

-V\^ + -ri + ?w)+S- (13) 

For the general dependent variables, <t> = 1, u, v, and w, Eq. 
(13) refers to the continuity and momentum equations. T and 
S are general diffusivity and source terms, respectively. The 
SIMPLE algorithm is used as the starting point (Patankar, 
1980). Due to the existence of source term, Q, in Eq. (2), the 
AE, Aw, As, AN, and b in the pressure correction equation 
have been changed to balance this source term: 

AE = d„ 

Aw=du 

As = ds 

As = d„ 

Ar + —rAdAr sm(d + d0) 

Ar + —rAdAr sm(6 + 60) 

rsA6 - — rAdAr cos(0 + 0o) 

r„Ad - — rAdAr cos(0 + 0o) 

(14) 

b = •l(if„r„-tfsrs)A6+ (u*-u*„)Ar) 

+ ew[ - up sin(0 + 60) + vp cos(0 + d0)]rA6Ar. (15) 

The u" and v" indicate the calculated value before the pressure 
correction. During the numerical calculation, the following con
trolling parameters were specified: radius ratio, / , the dimen-
sionless curvature, e, and the axial pressure gradient (-dp/ds). 
The iteration procedure will be stopped when the convergence 
criterion is satisfied for all nodes: 

II^/'II - 1 0 (16) 

where </> refers to u, v, w, andp'. Subscripts, /andy, represent 
the 6 and r coordinates, respectively, and superscript, k, rep
resents the Arth iteration. Under-relaxation factors have been 
applied to obtain a convergent solution. Generally speaking, 
the greater the Dean number, the smaller the relaxation factor. 
The under-relaxation factors ranging from 0.1 to 0.8 have been 
used according to different computation cases. After obtaining 

b.O 
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MishraS Gupta (1979) / 

Dennis & Ng (1982) J 

d p / d s 

Fig. 2 Comparison of the dimensionless friction coefficient 

the convergent velocities, u, v, and w, Eq. (10) is applied to 
calculate the friction factor. 

To assess the accuracy of the governing equations and the 
validity of the associated computer program, the predicted 
results have been compared with bench mark results from 
Sparrow et al. (1964) for the case of the straight annular sector 
duct. In this case, the dimensionless curvature, e, has been set 
to equal zero. The present prediction agrees very well with the 
results of Sparrow et al. (1964), and the maximum deviation 
between these two results is less than 1 percent. 

By setting Q = 360 deg and r* = 0, the annular sector duct 
reduces to a circular duct. To further verify the accuracy of 
the computer code, the predicted results for the curved circular 
duct have been compared with the other experimental and 
numerical predictions. Mishra and Gupta (1979) experimen
tally studied coiled duct flow, and the test data can be presented 
by one equation in the laminar flow region for the circular 
duct. 

fc 
•^=1+0.033 
Js 

/DeRe 
logi0{dP7dsi 

(17) 

Figure 2 shows the comparison of the current work and the 
predicted results by Dennis and Ng (1982) and Mishra and 
Gupta (1979). This figure reveals that the present numerical 
results agree well with the results of the other research. Figure 
3 shows the comparison of the axial velocity distributions in 
an annular sector duct between the present investigation and 
Ghia et al. (1987). In this calculation, parameter of Q = ir/ 
6, a = 7r, r = 0.5, e = 0.1 have been applied. Figure 3(a) 
shows the axial velocity distribution along the tangential di
rection, where r = (r0 + rj)/2. In this figure, lines indicate 
the prediction results by Ghia et al. (1987) while the symbols 
are the prediction by this study. Figure 3(b) shows the com
parison along the radial direction, where 0 = a = v. Inspection 
of this figure indicates that an acceptable agreement can be 
found. 

Numerical experiments have also been conducted to deter
mine adequate grid distribution for the present study. First, 
the overall performance has been examined for three distinct 
radius ratios and a angles: / = 0.9, a = 0; r* = 0.5, a = 
7r; and r* = 0.1, a = ir/2. Uniformed grids of 15 x 15, 20 
X 20, 30 x 30, 60 x 60 (the grid number in the tangential 
direction x the grid number in the radius direction) have been 
applied. For the r* = 0.9 duct, an additional grid distribution 
of 80 X 20 is also tested due to the considerable difference in 
length in the tangential and radius directions. During the cal
culation, parameters, e = 0.2 and -dp/ds = 50,000, are used. 
The major results are listed in Table 2. These data indicate 
that a grid size 30 X 30 is adequate for the majority of cases. 
Even for the case of r* = 0.9, the deviation of the friction 
coefficient between the results of grid size, 30 x 30, and that 

Journal of Fluids Engineering MARCH 1994, Vol. 116/55 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of the finer grid is less than 1 percent. Therefore, the major 
results that are illustrated in these figures are based on a grid 
size of 30 x 30. 

Results and Discussion 
As mentioned earlier, the five major parameters controlling 

the flow behavior of an annular sector duct are: the sector 
angle, the relative location of the duct to the curvature direc
tion, the duct radius ratio, the dimensional curvature, and the 
axial pressure gradient. The general behavior of the axial and 

De = 300 

Present 
Study 

0.4 0.6 

(r-r . ) / ( ro-r . ) 

b) radial d i rect ion. 

1.5 ™ 

WAV i -i 

0.5 ~ 

0 " 

BV 

/* 

M ~~' ^ 

De 
De = 

De 

1 

•~ -̂  r \ . 

*" - ̂  

Ghia et. al s t u d y 

= 50 o 
100 • 

. 300 

i . , . . . j . . 

^~ IK 

0 0.2 0.4 0.6 0.8 

(e-e.y^-e,) 

b) tangent ia l d i rec t ion . 

Fig. 3 Comparison of the axial velocity distribution 

secondary velocity distributions in an annular sector duct will 
be discussed in this section first. The effect of each major 
parameter on the flow behavior will then be discussed in se
quence. 

Figure 4 shows the typical flow patterns in the annular sector 
duct with a iv degree sector angle, e = 0.2, - dp/ds = 50,000, 
and i* = 0.5 have been used to calculate these figures. When 
a = 0, Fig. 4(a) indicates that the centrifugal force direction 
is from left to right, which coincides with the symmetrical 
centerline of the annular sector duct. Due to the flow sym
metry, only half-axial and secondary flows are presented in 
this figure. The top half of Fig. 4(a) represents the axial velocity 
distribution, while the bottom half represents a vector plot for 
the secondary flow. Since high axial velocity is near the core 
region, between the inner and outer wall, a northeast direction 
flow in the cross section is generated by centrifugal force, as 
seen in this figure. For mass conservation, the downward 
(southeast direction) flow is generated near the inner and outer 
walls by the pressure gradient. As a result, two vortices are 
created in each half-domain. The vortex near the outer wall 
is much stronger than the one near the inner wall. This figure 
also shows that the high axial velocity contours are pushed 
toward the outer wall, which creates a large velocity gradient 
along the outer wall region. Figure 4(b) shows the axial and 
secondary flows in a TT degree annular sector duct when a = 
7T. As in Fig. 4(a), only half-domains for axial and secondary 
flows are plotted in this figure due to the symmetry of the 
flows. Centrifugal force drives the fluid flowing along the 
middle of the duct, and two backward flows are generated in 
the opposite direction near the solid walls. As a result, the high 
axial velocity region is pushed toward the straight surface in 
the right hand side, which creates two separate and symmetrical 
velocity peaks in the cross section. Unlike the case in Fig. 4(a), 
however, three vortices are detected in each half-domain in 
Fig. 4(b). Two of them are near the inner wall and one is near 

a) a = 0, 0 = TT b) a = 7T, Q = n 

Table 1 Comparison of the present results with Sparrow 
et al. (1964) 

Ri /Re 
Ro 

0.1 
0.3 
0.5 
0.7 
0.9 

Present Study 

15.76 
16.98 
18.84 
20.87 
22.92 

Sparrow et al. (1964) Deviation 
15.61 
16.86 
18.76 
20.84 
23.00 

0.95 
0.77 
0.43 
0.14 
0.35 

c) a = n /2 , Q = 

(axial velocity) 

d) a = n / 2 , 0 = TT 

(secondary flow) 

Fig. 4 General flow behavior in the curved annular sector duct (/* 
0.5, - dp/ds = 50,000, t = 0.2) 

Table 2 Independent test for fully developed flow 

Ixm 

dp/ds = -50,000, 
e = 0.2, 

Q = ir, a = 7r, / = 0.5 

dp/ds --•• - 50 ,000, 
e = 0.2 
or = 0, /-* = 0.9 

dp/ds 

fl = TT, a-

-50,000, e = 0.2, 

V = 0.1 

/Re Re /Re Re /Re Re 
15X15 
20x20 
30x30 
60x60 
80x20 

26.13 
26.30 
26.47 
26.47 

598.3 
594.2 
590.4 . 
590.4 

6.45 
6.42 
6.38 
6.33 
6.34 

25.06 
25.23 
25.40 
25.58 
25.53 

347.3 
337.6 
337.6 
337.6 

41.48 
42.67 
42.67 
42.67 
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Table 3 Friction coefficient changes with the a angle 

a) 0 = TT b) Q = TT/2 c) 0 = TT/4 

Fig. 5 Effect of the sector angle on the secondary flow pattern 
(f* = 0.2, - dp/ds = 50,000, e = 0.2, a = 0) 

a) a = 0 b) a = TY/8 

c) a — n / 4 d) a = TT/2 

Fig. 6 Effect of angle, a, on the secondary flow pattern {-dp/ds = 
50,000, i* = 0.2, £ = 0.2, B = «•) 

the outer wall. Figures 4(c) and 4(d) illustrate the axial velocity 
and vector in the cross section plots for the case of the annular 
sector duct when a = w/2 and £2 = ir. Figure 4(c) shows that 
the high axial velocity contours are pushed to the right hand 
side by centrifugal force. Figure 4(d) illustrates that only two 
vortices are generated in the entire domain of the curved an
nular sector duct. 

Figure 5 demonstrates the effect of sector angle, Q, on the 
vector plot of the secondary flow. In the computation, i* = 
0.2, -dp/ds = 50,000, e = 0.2, and a = 0 have been applied. 
As seen in the figure, four vortices exist in the Q = -w duct. 
As the Q angle is reduced to TT/2, the number of vortices reduces 
to two. Upon further reduction of sector angle, fi, the number 
of vortices still remain at two. When Q = 7r (Fig. 5(a)), the 
left-hand side wall is perpendicular to the direction of the 
curvature. A secondary flow can be easily generated starting 
from these straight side walls, which results in two vortices in 
each half-domain of the cross section. When the 0 angle be
comes small, the side wall is almost parallel to the curvature 
direction, as seen in Figs. 5(b) and 5(c). In these cases, the 
high axial velocity near the symmetrical centerline region will 
generate a stronger centrifugal force along the center instead 
of being generated near the side wall region. As a result, only 
one vortex will be created in each half-domain. 

Figure 4 shows that the axial and secondary flow patterns 

a 0 7r ir x 

8 _ _ 4 2__ 

/Re 37.6 37.7 38.3 393 

in a curved annular sector duct can be dramatically affected 
with different a angles, which is due mainly in response to the 
interaction of the irregular boundary and centrifugal force. 
The ducts represented in Fig. 4 are three very special cases of 
a = 0, ir/2, and ir. In fact, the flow patterns in the duct with 
other a angles are different from these three special cases. 
However, one might express the flow pattern in some com
bination of these three typical flow patterns. Figure 6 reveals 
the effect of angle, a, on the secondary flow pattern for a 
curved annular sector duct when 0 = -K. The other controlling 
parameters in this figure are: r* = 0.2, -dp/ds = 50,000, 
and e = 0.2. Figure 6(a) shows the typical symmetrical flow 
for an a = 0 duct. As was discussed earlier, two vortices exist 
in each half-domain. In order to clearly explain this phenom
ena, these vortices are labeled by numbers, 1 to 4. In fact, the 
vortices near the outer wall is much stronger than that near 
the inner wall, which can be easily found by examining the 
stream function in the bottom half-domain. As a rotates from 
0 to 7r/8, vortex number 1 is pushed toward the bottom half 
of the domain, and vortex number 2 is pushed toward the 
bottom corner. Vortex numbers 3 and 4 are combined into 
one vortex near the inner wall. As a rotates from w/8 to w/ 
4, vortex number 1 is pushed even deeper along the outer wall, 
and vortex number 2 in the bottom corner is pushed toward 
the inner wall. As a rotates further, to 7r/2, the two vortices 
near the inner wall are eventually combined, and a two-vortex 
flow pattern is created. The change in the flow pattern between 
these ducts results in a change in the friction coefficient. Table 
3 gives a comparison of the friction coefficient as a function 
of the a angle. This table indicates that the friction coefficient 
increases as a increases. The value of the friction coefficients 
for the a = ir/8 and a = TT/4, angle ducts lay between that 
of the a = 0 and a = TT/2 ducts. 

Figure 5 indicates that when the Q angle is reduced from it 
to TT/2, the number of vortices reduces from four to two. Figure 
6 shows the effect of a angle on the secondary flow. The 
parameters used during the calculations are fi = ir, — dp/ds 
= 50,000, e = 0.2, and r* = 0.2. When a = 0, symmetrical 
vortices are found in the duct. As a increases, the flow still 
remains to the two vortex pattern. However,the vortex orig
inally in the top half domain moves toward the outer wall, 
and the other vortex moves toward the inner wall. When a = 
TT/2, one vortex is located near the outer wall and the other 
one is located near the inner wall. Figure 6 indicates that the 
vortex structure of the secondary flow is strongly dependent 
on the fi angle. Although it is not shown here, the larger the 
U angle, the more complex the secondary flow pattern will be. 
Therefore, we will hereinafter concentrate our discussion on 
the flow behavior of a curved annular sector duct when Q = 
7T. It is impossible, however, and also unnecessary, to discuss 
all of the possibilities of a angle. Therefore, only three typical 
ducts (a = 0, ir/2, and TT) have been studied. 

Figure 7 illustrates that the axial and secondary flow patterns 
are changed profoundly with the radius ratio for these ducts 
with an a = ir angle. The controlling parameters used in these 
calculations are a = TT, -dp/ds = 50,000, e - 0.2, and 0 = 
TT. Figure 7(a) shows that three vortices exist in the half-domain 
of the duct when r* = 0.5, two near the inner wall and one 
near the outer wall, which are labeled as vortex numbers 1 to 
3. When r* is reduced from 0.5 to 0.2, vortex number 1 becomes 
stronger than before. Vortex 2 is pushed towards the region 
near the straight boundary between the inner and outer walls, 
and dramatically reduces its intensity. It is worthwhile to note 
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that a right-to-left direction high velocity flow near the cen-
terline is generated by the vortex. This flow is in the opposite 
direction to the centrifugal force direction. Brought on by this 
secondary flow stream, the low axial velocity fluid penetrates 
into the high axial velocity contour along the centerline, Fig. 
1(b). When r* is further reduced from 0.2 to 0.1, vortex num
ber 2 vanishes, and only two vortices exist in each half-domain, 
as seen in Fig. 7(c). When r* = 0, the annular sector duct 
becomes a semicircular duct. Figure 1(d) shows that only one 
vortex exists in each half-domain. This figure also illustrates 
that the high axial velocity contours are pushed toward the 
right side boundary, and create a larger velocity gradient along 
this boundary. 

Table 4 compares the changes in the friction coefficient with 
the radius ratio variation for the curved annular sector duct 
when fl = IT. The results of the friction coefficient of the 

a) r#= 0.5 b) r # = 0.2 

;) r # = 0.1 d) 

straight annular duct are listed in this table. In this table, 
subscripts, c and s represent the curved and straight ducts, 
respectively. It can also be seen that the/Re increases as r* is 
increased for the straight annular sector duct. For example, 
when /•* is increased from 0.1 to 0.9, the/Re increases almost 
47 percent. However, for the curved annular sector duct,/Re 
increases as / is decreased, which is due to the higher velocity 
gradient near the solid boundary created by the secondary flow. 
The smaller the /•*, the stronger the secondary flow, and ul
timately the higher the/Re will be. It is interesting to see that 
when r = 0.9, the /Re of the curved annular sector duct is 
smaller than that of a straight annular duct. This phenomenon 
has been found by Larrain and Bonilla (1970) for a curved 
duct with a circular cross section for a very small Dean number. 
In fact, due to the large boundary/cross section area ratio, the 
Reynolds number of the /•* = 0.9 duct is less than 0.2 percent 
of the Reynolds number in the r* = 0 duct. This represents a 
very small Dean number flow, if one uses the definition of the 
Dean number defined by Larrain and Bonilla (1970), De = 

Re Table 4 also indicates that for the curved duct, the 

Fig. 7 Effect of i* on the flow behavior of the curved annular sector 
duct (-dp/ds = 50,000, e = 0.2,52 = ?r, a = IT) 

/Re increases significantly only when r" is smaller than 0.6. 
The large r* duct indicates a longer, narrower cross section 
duct. It is difficult to generate a considerable secondary flow 
in this kind of duct. This table also shows the effect of the a 
angle on the/Re. For a large radius ratio, the a = 0 duct has 
the highest /Re value. When r* is smaller than 0.6, the a = 
7r/2 duct has the higher/Re value among the three ducts. In 
this table, the a = it duct has the lowest/Re value among the 
three ducts. This is true only when the Dean number is small. 
Generally speaking, the secondary flow in an a = ir duct is 
more complex and is usually stronger than in the duct with 
other a angles. Keeping in mind that -dp/ds is defined on 
the centerline of the holding pipe, the duct with the a = TT 
angle has the smallest surface area, while the duct with the a 
= 0 angle has the largest surface area among all possible 
annular sector ducts for a fixed length of the centerline, ds. 
This is why the duct with the a = 0 angle has a larger /Re 
value when the secondary flow is weak. 

For the study of a curved duct with a circular cross section, 
usually only one parameter, the Dean number, which reflects 
both the axial pressure gradient and the dimensionless cur
vature, is used. For a curved annular sector duct, however, 
retaining the same Dean number usually cannot guarantee that 
the two ducts produce the same axial and secondary flow 
patterns. For example, in Table 5, the two cases have the same 
Dean number with different - dp/ds and e combinations. The 
results indicate that the/Re values in these two cases can have 
an almost 14 percent difference. Therefore, the effect of the 

Table 4 Effect of the radius ratio e = 0.2 -dp/ds = 50,000 

!* 

0.9 
0.8 
0.7 
0.6 
0.5 
0.3 
0.1 
0.0 

(/Re), 

23.0 
21.9 
20.8 
19.8 
18.8 
16.9 
15.6 
15.7 

t 

0.05 
0.5 

(./Re), 

22.9 
22.1 
21.7 
23.2 
26.6 
33.9 
37.6 
39.5 

a = 0 

(/Re) c /( /Re), 

0.996 
1.01 
1.04 
1.17 
1.41 
2.01 
2.41 
2.52 

(/Re)c 

22.7 
21.7 
22.7 
23.8 

' 27.9 
34.0 
39.7 
41.9 

•K 

a = — 
2 

(/Re) c /( /Re) s 

0.987 
0.991 
1.09 
1.20 
1.49 
2.01 
2.54 
2.67 

Table 5 Effect of the dimensionless curvature 

- dp/ds 

50,000 
15,811 

De 

11,180 
11,180 

Re 

843 
327 

(/Re)c 

22.7 
21.5 
21.2 
22.3 
26.3 
31.42 
35.3 
37.6 

/ R e 

25.45 
22.45 

O f = IT 

(/Re)c /(/Re) s 

0.987 
0.982 
1.02 
1.13 
1.40 
1.86 
2.26 
2.39 
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axial pressure gradient and the dimensionless curvature on the 
flow behavior will be studied separately. 

Since the Dean number is proportional to the axial pressure 
gradient, -dp/ds, it can be expected that -dp/ds will sig
nificantly affect the flow pattern of a curved annular sector 
duct. Figure 8 shows the axial and secondary flow patterns in 
the annular sector ducts when a = 0 and a - IT, e = 0.2, U 
= w and / = 0.4. At a small pressure gradient, -dp/ds = 
2,000, Fig. 8(a) shows that for the a = 0 duct, the axial velocity 
gradient near the solid walls does not significantly increase as 
compared with the straight annular sector duct. However, as 
- dp/ds increases from 2,000 to 200,000, Fig. 8(b) shows that 
the axial velocity gradient near the outer wall dramatically 
increases, which indicates a considerable increase in the friction 
coefficient. However, Fig. 8(c) and Fig. 8(d) reveal totally 
different axial velocity flow patterns. At a low pressure gra
dient, the axial velocity contour is in a crescent shape, while 

a) dp/ds = -2,000, 
a = 0 

b) dp/ds 
a = 0 

-200,000, 

;) dp/ds = -2,000, d) dp/ds = -200,000 

Fig. 8 Effect of the axial pressure gradient on the flow behavior of the 
curved annular sector duct (t = 0.2, r* = 0.4, ft = IT) 

for the large pressure gradient, the high axial velocity contours 
are separated from the centerline, and for a large pressure 
gradient, are isolated near the straight boundary on the right-
hand side. Increasing the axial pressure gradient significantly 
increases the axial velocity gradient along the solid boundaries, 
as seen in Fig. 8 (d). Considering the secondary flow, Fig. 8(c) 
shows that in the case of a low axial pressure gradient flow, 
two vortices exist in each half-domain, while the one near the 
outer wall dominates the secondary flow. For the case of a 
high axial pressure gradient, three vortices are observed in each 
half-domain, while the vortex near the inner wall makes a 
significant contribution to the axial velocity distribution. 

Table 6 shows the effect of the friction coefficient as a 
function of the axial pressure gradient. For a small axial pres
sure gradient value and the a = 0 angle, the straight annular 
sector duct has a higher /Re value than the other ducts listed 
in this table. When a = IT, the annular sector duct has the 
smallest /Re , while for the a = ir/2 duct the /Re value for 
the annular sector duct appears in between the a = 0 and a 
= 7r/2 duct. As the axial pressure gradient increases due to 
the strong secondary flow, the /Re value for the a = % duct 
rapidly surpasses that of the a = 0 duct. For example, at 

a) £ = 0.05, a b) £ = 0.5, a = 0 

c) d) £ = 0 .5 , 

Fig. 9 Effect of the curvature ratio on the flow behavior of the curved 
annular sector duct (-dp/ds = 50,000, r* = 0.4, J) = *•) 

Table 6 Effect of the axial pressure gradient r* = 0.4 e = 0.2 f/Re)s = 18.8 

- dp/ds 
a = 0 

(/Re)c (/Re)c/(/Re)s (/Re)c (/Re)c/(/Re)s (/Re)c (/Re)c/(/Re), 
1,000 
5,000 

10,000 
50,000 

100,000 
500,000 

20.6 
20.8 
21.4 
28.2 
33.2 
51.8 

1.10 
1.11 
1.14 
1.50 
1.76 
2.76 

17.80 
18.70 
20.90 
30.60 
36.20 
58.00 

0.947 
0.990 
1.110 
1.630 
1.930 
3.090 

16.80 
17.90 
20.20 
31.60 
38.40 
64.40 

0.89 
0.95 
1.070 
1.680 
2.040 
3.430 

e 

Table 7 Effect of the dimensionless curvature r* = 0.5 - dp/ds = 20,000 (/Re) s = 18.8 

it 
a = 0 a = — a = ir 

2 

(/Re)c (fRe)c/(fRe)s (fRs)c (fRe)c/ (/Re)s (/Re)c ( /Re) / ( /Re) s 

0.7 
0.5 
0.3 
0.2 
0.1 
0.01 

26.60 
25.20 
23.40 
22.40 
20.60 
19.00 

1.42 
1.34 
1.24 
1.19 
1.10 
1.01 

31.30 
27.40 
23.80 
22.50 
20.40 
18.80 

1.66 
1.46 
1.27 
1.20 
1.09 
1.00 

32.30 
27.80 
24.30 
22.40 
20.40 
18.90 

1.72 
1.48 
1.29 
1.19 
1.09 
1.01 
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- dp/ds = 500,000 with an /Re value of the a = it duct is 
about 24 percent higher than that for the a = 0 duct. 

Figure 9 shows the effect of the dimensionless curvature on 
the axial and secondary flows for a = 0 and ir ducts. The 
controlling parameters during the calculation are: -dp/ds = 
50,000, Q = 7T, and r* = 0.4. Figures 9(a) and 9(6) indicate 
that even when the curvature increases 10 times, from 0.05 to 
0.5, no significant change is found in the axial and secondary 
flow patterns for the a = 0 duct. However, Figs. 9(c) and 
9(d) reveal a considerable difference in the flow patterns for 
the a = ir duct with different curvatures. When e = 0.05, 
only two vortices are observed in the half-domain, while three 
vortices can be found when the curvature reaches 0.5. Table 
7 shows the effect of curvature on the friction coefficient for 
fully developed flow. This table indicates that when curvature, 
e, is smaller than 0.2, the/Re value for the three ducts is almost 
the same. However, as the curvature increases, the/Re value 
for the a = ir duct rapidly surpasses that of the other two 
ducts. Finally, at e = 0.7, the/Re value for the a = ir duct 
is almost 21 percent higher than for the a = 0 duct. 

Concluding Remarks 
In this paper, the flow behavior in the fully developed curved 

annular sector duct is investigated and discussed. Five param
eters have been identified as the major controlling variables: 
the sector angle, fi; the angle between the duct symmetrical 
centerline and the curvature direction, a; the radius ratio of 
the inner/outer walls, r*; the holding pipe curvature, e; and 
the axial pressure gradient, -dp/ds. The sector angle, fi, can 
significantly affect secondary flow behavior. For a small fi 
angle, only two vortices are observed in the case of a moderate 
Dean number. When 0 = ir, the vortex structures can be very 
complex, which may depend on other parameters, especially 
the a. angle. For example, when a = 0, four vortices are 
observed in the 0 = 7r duct. As a increases, the vortex number 
reduces to three, and then to two, when a = TT/2. Upon a 
further increase of a, the vortex number increases again, and 
eventually the vortex number reaches six, as a = ?r. The radius 
ratio variation does not significantly affect the vortex structure, 
except in the small radius ratio region. However, the friction 
coefficient of the annular sector duct is considerably affected 
by the r* ratio. When / is larger than 0.6, the friction coef
ficients of the curved annular sector duct are not remarkably 
different from the straight annular sector duct. However, with 
a small r* ratio, the friction coefficient of a curved annular 
sector duct can be tripled as compared to the straight duct. 
For a moderate range of Dean numbers, increasing the pipe 
curvature and the axial velocity does not change the flow vortex 
structure. However, increasing e and - dp/ds can significantly 
increase the velocity gradient near the wall region, which results 
in an enhancement of the friction coefficient in the curved 
annular sector duct. 
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The Stability of Pipe Entrance 
Flows Subjected to Axisymmetric 
Disturbances 
This paper reexamines an important unresolved problem in fluid mechanics—the 
discrepancy between measurements and predictions of stability in pipe entrance 
flows. Whereas measured critical Reynolds numbers are relatively insensitive to 
velocity profile shape in the streamwise direction, the theoretical results indicate a 
rapid increase, both as the equilibrium profile is approached, and toward the inlet. 
The current work uses the displacement thickness based Reynolds number as a 
rational basis on which to compare new stability predictions obtained by means of 
the Q-Z algorithm, with existing theoretical results. Although the present data are 
shown to be the only that are consistent with the classical parallel boundary layer 
limit towards the inlet, they still deviate increasingly with axial distance from the 
only available experimental results. By examining pipe inlet stability data in relation 
to boundary layer measurements and predictions, the work effectively questions the 
commonly held belief that streamwise variations of flow alone are responsible for 
these deviations, suggesting that the finite amplitude nature of the applied disturb
ances is the most likely cause. 

1 Introduction 
This study is concerned with the unresolved issue of pipe 

entrance flow stability. Analyses of fully developed pipe Po-
iseuille flows have demonstrated that they are stable (both in 
a temporal and a spatial sense) to infinitesimal axisymmetric 
and nonaxisymmetric disturbances (Sexl, 1927; Corcos and 
Sellars, 1959; Gill, 1965; Lessen etal., 1968; Davey and Drazin, 
1969; Burridge, 1970; Garg and Rouleau, 1972). Experimen
tally these calculations have been shown to accurate for axi
symmetric disturbances by Leite (1959). Of the studies involving 
nonaxisymmetric disturbances, experiments (for example Fox 
et al., 1968) indicate spatial instability—in contradiction with 
the analysis—but attributed by Garg and Rouleau (1972) to 
the finite amplitude nature of the experimentally superimposed 
disturbances, rather than to flaws in the analysis. Patera and 
Orszag (1981) established that finite amplitude equilibria do 
not exist with respect to finite amplitude axisymmetric dis
turbances, thus indicating that fully developed pipe flows are 
stable to all axisymmetric disturbances. Although in a later 
paper Orszag and Patera (1983) showed that certain aspects 
of transition in such flows may be explained by a secondary 
instability, no definitive answers yet exist to this problem. 

Aside from the possible local instability of Hagen Poiseuille 
flows to finite amplitude disturbances, experimentally ob
served turbulence in such systems may be attributed to the 
growth of small disturbances in the boundary layer associated 
with the hydrodynamic development region of a circular tube, 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
June 16,1992; revised manuscript received February 3,1993. Associate Technical 
Editor: A. Prosperetti. 

leading to transition and the downstream transport of turbulent 
structures. Extensive analytical investigations of pipe entrance 
flow stability have been performed by Tatsumi (1952), Huang 
and Chen (1974a, b), Gupta and Garg (1981), and Garg (1981), 
some of which are shown for comparison purposes in Fig. 1. 
Even though these studies succeeded in ascertaining regions of 
instability within the laminar entrance region it may be seen 
that they differ considerably not only from one another, but 
also from the experimental results of Sarpkaya (1975), the 
axisymmetric portion of which is shown. 

30000 

25000 

20000 

« 15000 

10000 

5000 

0 

Huang & Chen (1975a,b) 

Garg (1981) 

v Tatsumi (1952) 

Sarpkaya (1975) 
(axisymmetric disturbances) 

Broken and bold lines refer 
to non-axisymmetric and 
symmetric disturbances 
respectively. 

0 0.002 0.012 0.004 0.006 0.008 0.010 
xl(R.Re) 

Fig. 1 Comparison of previous results: axial variation of critical Reyn
olds number 
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Of the above analyses, Tatsumi used almost similar velocity 
profiles in conjunction with a boundary layer type asymptotic 
solution of the Sexl equation. These early results are generally 
considered to be unreliable (see for example Chen and Sparrow, 
1967). Huang and Chen (1974a, b) utilized the Sparrow et al., 
(1963) base flow model to investigate temporal stability, while 
Gupta and Garg (1981) and Garg (1981) used the Hornbeck 
(1963) base flow model to analyze the spatial stability problem. 
Nevertheless it is well established that the neutral curve does 
not depend on whether the disturbances grow or decay in time 
or in space: the alternatives degenerate to the same analytical 
problem (Gaster, 1962 and 1965). Gupta and Garg established 
that stability calculations are strongly sensitive to velocity pro
file data and ascribed deviations between their results and those 
of Haung and Chen to differences in the base flow models 
used. Since the Hornbeck model of developing flow in a pipe 
entrance has been shown (Schmidt and Zeldin, 1969; Shah, 
1978) to be more precise than the Sparrow model, Garg's results 
are customarily considered to be the most accurate; however 
this opinion has never been particularly well justified in the 
literature. 

It is commonly believed that deviations between experiment 
and analysis may be attributed to the latter ignoring the stream-
wise variations inherent to such flows. Nonetheless, prior to 
embarking on a non-parallel analysis which would probably 
use the parallel flow analysis as its leading approximation, a 
definitive solution to the parallel problem is required. 

Arising from the above, the objectives of this study were (i) 
to establish an acceptable means of assessing the relative ac
curacies of the various analyses, and (ii) if Garg's results were 
found to be lacking in accuracy, to establish a better set of 
parallel flow results for the pipe entrance flow problem, as a 
leading approximation to a future non-parallel flow analysis. 

2 Comparison Between Analytical Results 
While it is generally accepted that pipe flows are boundary-

layer like in the vicinity of the inlet, this appears not to have 
been quantified in the literature. Since the stability behavior 
of zero pressure gradient, parallel flow boundary layer results 
is well-established, it seemed logical to examine the asymptotic 
trends of the various entrance stability analyses towards the 
inlet as this boundary layer limit is approached. 

Therefore the existing theoretical results of Tatsumi (1952), 
Huang and Chen (1974b), and Garg (1981) were compared 
(Fig. 2) in a framework of Re6* versus x [x=x/(R.Re); 
Re=U0R/p; Re6* = U0b*/v; 8* = displacement thickness; 

3000 

1000 

500 

0.012 

Fig. 2 Comparison of previous results: axial variation of critical Reyn
olds number based on displacement thickness 

i? = pipe radius; t/0 = pipe cross-sectional mean velocity]. This 
was implemented simply by multiplying the critical Reynolds 
numbers of the existing results by the dimensionless displace
ment thicknesses 8*/R computed using the method of Mohanty 
and Asthana (1978). 

As x^O and the pressure gradient parameter A = (82/v)dUc/ 
cfo—0 {Uc is center line velocity and 5 the boundary layer thick
ness), the results would be expected to approach the well-
accepted parallel boundary layer stability limit of Re6* = 520 
(given for example by Jordinson's (1970) study in the absence 
of a pressure gradient). It is seen that while Garg analysis is 
closest to fulfilling this requirement, the limit toward which 
his results approach is about 25 percent too high, motivating 
the further part of this study whose purpose was to develop 
a more accurate solution to the pipe entrance stability problem. 
From the outset it was decided to confine the current work to 
axisymmetric disturbances, for the reason that Garg (1981) 
found the flow to be more unstable to this mode of disturbance 
than to the nonaxisymmetric disturbance with an angular wave-
number of unity. 

3 Analysis 
The approach involved the development of an appropriate 

base flow system, and a solution to the Sexl equation, both 
of which are briefly outlined below. 

The entrance of a steady pipe flow is characterized by that 

Nomenclature 

c = 

c = 

Re = 

Re,* = 

r 
r 

R 
t 
u 
u 

phase velocity 
dimensionless phase velocity 
[c/U0] 
Reynolds number based on 
radius [UoR/v] 
Reynolds number based on 
displacement thickness 
[Ua8*/v] 
radial coordinate 
dimensionless radial coordi
nate [r/R] 
pipe radius 
time 
base flow axial velocity 
dimensionless base flow axial 
velocity [U/UQ] 
base flow radial velocity 

t = 
U0 = 

Ur = 

x = 

8 
8* 
i 

dimensionless base flow ra
dial velocity [i>Re/[/0] 
dimensionless time [vt/R2] 
pipe cross-sectional mean ve
locity 
pipe centerline velocity 
axial coordinate (distance 
from pipe inlet) 
dimensionless axial coordi
nate [x/(R.Re)] 
wavenumber 
dimensionless wavenumber 
[aR] 
dimensionless wavenumber 
[««*] 
boundary layer thickness 
displacement thickness 
vorticity 

f = 

A = 

X = 

i = 
* = 

V = 

dimensionless vorticity [fi?/ 
Uoi 
angular coordinate 
pressure gradient parameter 
[(52/v)dU0/dx\ 
dimensionless wavelength 
[2ir/u\ 
fluid kinematic viscosity 
dimensionless amplitude 
function 
stream function 
dimensionless stream func
tion W/(UoR2)] 
dimensionless perturbation of 
stream function 
dimensionless critical fre
quency [a*c] 
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region over which velocity profiles change from a top-hat shape 
at the inlet to effectively parabolic (the so-called Hagen-Po-
iseuille shape) far downstream. A large number of investigators 
have attempted to analyze this class of flow (for example, 
Langhaar, 1942; Hornbeck, 1963; Campbell and Slattery, 1963; 
Sparrow et al., 1964; Mohanty and Asthana, 1978; Kanda, 
1988). Van Dyke (1970) classified different methods in the 
literature into four categories: (i) numerical finite differences 
(ii) linearization of the inertia terms (iii) integral methods, and 
(iv) series expansions. A modified vorticity-stream approach 
was chosen for the present work. 

The vorticity-stream (f- I/') form of the two-dimensional, 
incompressible, axisymmetric Navier _Stokes equations were 
non-dimensionalized according to r=r/R; x = x/_(R.Rs); 
l = (vt)/R

2;u = u/U0;v=(vRe)/U0;J, = ip/(U0R
2)and{=({R)/ 

U0, where f is the vorticity and the other symbols have their 
usual meaning. Provided Re> > 1 the equations reduce to the 
following: 

dl+ dr + dx -3?*rSr f W 

with 
u= (l/2ir?)dj/dr; v= - (l/2jr)d£/3x; 

- f = [d2xp/df- (l/r)d^/dr]/(2Tt) 

The above equations do not contain Reynolds number and 
thus the truncation error known as implicit artificial viscosity 
(Roache, 1972a) will not affect the results. The first upwind 
differencing scheme was used to solve the equations1 (Roache, 
1972b). Dynamic instabilities were avoided by restricting the 
magnitude of the time increment, while static instabilities were 
not encountered. Pivotal increments were initially determined 
merely from centerline velocity convergence requirements. 

The results of the current model (in the steady limit) were 
compared on the basis of centerline variations (Uc/U0) with 
the experimental data of Nikuradse (published by Prandtl and 
Tietjens, 1931) and the analytical data of Hornbeck (1963), 
and were found to differ by less than 1 percent at any axial 
position. 

A solution to the parallel flow stability problem is sought: 
thus the linear stability is required of an axisymmetric flow in 
cylindrical co-ordinates (x,?,6) for a base flow having the ve
locity components [M,(T),0,0)] which is perturbed by an axi
symmetric disturbance with the mathematically convenient 
form il/'(x,r,t) = 4>(rexp[ia(xct)}. For the temporal stability 
problem under consideration $ is a complex amplitude function 
given by <t>(r) = <t>r + i<t>i and the dimensionless celerity of dis
turbance propagation (phase velocity) is defined by c=c/' 
U0 = cr+iCj where cr is the velocity of wave propagation in the 
base flow direction and c,- determines the degree of damping 
(negative) or amplification (positive). The dimensionless wave-
number a(= aR) is real and related to the dimensionless wave
length by X = 27r/a. 

Implementation of the above into the incompressible form 
of the Navier Stokes equation in cylindrical coordinates and 
linearization leads to the Sexl (1927) equation given by 

-^—(L-a2)2<j> = {u-c)(L-a2)4>-r(u?r)-r4> (2) 
(la. Re) 

where 
uT = du/dr and L = d2/df- (l/r)d/df. 

'This entails the use of centered space differences for the first and second 
derivative diffusion terms thus allowing information to be diffused in all direc
tions; however advection terms are approximated by using the first upwind 
scheme which allows the effect of advection to be felt only in the flow direction. 
While this method has been criticized by Roberts and Weiss (1966) among others, 
it has been found to produce results with good absolute accuracy (Wirz and 
Smoldern, 1978; Roache, 1972b)-attributed to the fact that the scheme is phys
ically correct since it possesses the transportive property. 

The Sexl equation differs from the Orr-Sommerfeld equation 
in that the origin (? = 0) is a regular singular point. A singular 
eigenvalue problem results, requiring that <j>/? and <j>f/f be 
bounded as r—0. At the rigid boundary (?=' 1)$ = <£? = 0. There
fore the problem of stability has been reduced to a character
istic value (eigenvalue) problem of the form 3(a,c,Re) = 0, the 
solution of which entails the determination of the complex 
celerity c (the eigenvalue), for various values of Re and a. 
Consequently the locus c, = 0 may be obtained, defining the 
curve of neutral' stability for a particular velocity profile. The 
critical Reynolds number of stability is the point on the curve 
where the Reynolds number has its smallest value. 

Of the procedures available for the solution of differential 
eigenvalue problems (expansions in orthogonal functions, ini
tial value methods and finite differences) the method of finite 
differences was selected. The technique, briefly outlined below, 
is more fully described in da Silva and Moss (1988). 

The Sexl equation was discretized using central difference 
approximations. Together with the appropriate boundary con
ditions a system of equations of the form ([A] + c[E\)4> = 0 was 
obtained. The complex matrices A and B are pentadiagonal 
and tridiagonal respectively. For given values of a and Re this 
is a generalized eigenvalue problem for the celerity c, with the 
eigenvalue relation given by the characteristic determinant 
det([A]+c[B]) = 0. The problem was solved using a generali
zation of the Q-R algorithm known as the Q-Z algorithm. 
This technique, developed by Moler and Stewart (1973), was 
selected because of its efficiency in computing the eigenvalues 
and corresponding eigenfunctions for problems in which ma
trix B is singular. 

In order to improve the accuracy of the current system and 
yet circumvent undesirable truncation errors given by standard 
finite difference enhancement methods (Collatz, 1965; Hughes, 
1972), the hydrodynamic stability equation was transformed 
according to .y = sinh(0)/sinh(C), effectively stretching the 
radial co-ordinate (the variable C being essentially a grading 
parameter) and giving a distribution of points that is dense 
near the wall where the flow variables change rapidly: this is 
particularly important in the vicinity of the inlet where the 
boundary layer is thin. A number of numerical experiments 
were performed utilizing both the transformed and unrefined 
procedures. The transformed procedure required about 1/4 of 
the number of mesh points of the untransf ormed one to achieve 
results of comparable accuracy, leading to savings in com
puting time of a factor of about 43. As indicated earlier the 
convergence of the flow model was initially established using 
mesh densities which ensured centerline velocity convergence. 
However it was found that this did not necessarily guarantee 
adequate stability results. Thus the base flow model and sta
bility calculations were linked. In other words, the base flow 
model was recalculated using successively smaller pivotal in
crements. At each stage linear stability calculations were re
peated and checked for convergence. Eventually convergence 
(within specified limits) was established, yielding a final sta
bility map and optimized base flow results.2 The predictions 
are shown in Table 1. 

4 Results and Discussion 
The current stability predictions (Rea* and Re) and those of 

Garg (1981) are shown in Figs. 3 and 4, together with the 
' experimental results of Sarpkaya (1975). It is seen (Fig. 3) that 
the present results may be extrapolated closely to the predicted 
boundary layer value (Re5* = 520) of Jordinson (1970) for zero 
pressure gradient (A = 0) and neglecting nonparallel effects; in 
contrast the results of Garg (1981) apparently tend towards a 
limiting value which is about 25 percent too high. Those of 

Calculations on an IBM mainframe computer (3081K processor) required 
about 10 000 000 cpu seconds of machine time. 
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Table 1 Flow and stability data for the current investigation 

x 
X l O 4 

Re & /R ~-cr 
Uc/U0 Res' 

2.0 
3.0 
4.0 
5.0 
7.0 

10.0 
13.0 
17.0 
20.0 
30.0 
40.0 
50.0 
60.0 
70.0 
80.0 

23454 
19745 
17802 
16552 
14938 
13549 
12679 
11910 
11525 
10874 
10992 
12182 
13930 
18138 
38400 

0.02240 
0.02700 
0.03080 
0.03408 
0.03958 
0.04626 
0.05180 
0.05802 
0.06212 
0.07330 
0.08224 
0.08972 
0.09622 
0.10194 
0.10718 

12.79 
10.28 
8.75 
7.70 
6.40 
5.21 
4.46 
3.80 
3.42 
'2.61 
2.08 
1.65 
1.31 
0.94 
0.44 

0.41762 
0.42210 
0.42422 
0.42555 
0.42846 
0.43222 
0.43579 
0.44076 
0.44411 
0.45599 
0.46629 
0.47202 
0.47933 
0.48464 
0.48350 

0.11967 
0.11717 
0.11439 
0.11164 
0.10854 
0.10417 
0.10066 
0.09717 
0.09434 
0.08723 
0.07976 
0.06988 
0.06042 
0.04644 
0.02280 

1.0455 
1.0559 
1.0645 
1.0721 
1.0851 
1.1012 
1.1150 
1.1309 
1.1415 
1.1719 
1.1972 
1.2202 
1.2400 
1.2582 
1.2750 

525.465 
533.188 
548.331 
563.929 
591.251 
626.799 
656.654 
690.934 
715.861 
796.985 
903.909 
1092.944 
1340.356 
1849.121 
4222.995 

1200 

1000 

800 

Boundary layer limit of 

Jordinson (1970) using 

parallel flow analysis 

Broken and bold lines refer 

to non-axisymmetric and 

symmetric disturbances 

respectively. 

Non-axisymmetric disturbances 

• Sarpkaya (1975) m • 

Measured boundary ^Boundary layer limit of Gaster (1974) 

layer limit of Ross et al (1970) usi"? non-parallel flow analysis 

0.002 0.004 0.008 

xl(R.Re) 

Fig. 3 Axial variation of critical Reynolds number based on displace
ment thickness, incorporating the results of the present study and lim
iting boundary layer values 
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-4.5 -4 •1.5 -3.5 -3 -2.5 -2 
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Fig. 4 Axial variation of critical Reynolds number 

Sarpkaya tend within experimental error bounds towards the 
measured boundary layer limit (Schubauer and Skramstad, 
1947; Ross et al., 1970) for A = 0 given by Re6*~400. 

Until recently discrepancies between the above well-docu
mented measured and predicted boundary layer values were 
thought to arise from nonparallel effects. The further analyses 
of various researchers (for example, Barry and Ross, 1970; 
Ling and Reynolds, 1973; Gaster, 1974) only partly accounted 
for the differences. The favorable agreement of others (Saric 
and Nayfeh, 1975; Bouthier, 1972 and 1973; Bridges and Mor-

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

Parallel boundary layer 

/prediction of Jordinson (1970) 

Present study 

Broken and bold lines refer 
to non-axisymmetric and 
axisymmetric disturbances 
respectively. 

Garg (1981) 

Huang & Chen (1974a,b) 

0.008 

Fig. 5 

0.0041 0.006 

x/(R.Re) 

Axial variation of critical frequency 

0.010 

ris, 1987) with the value of Re** = 400 has been more recently 
dismissed convincingly by Fasel and Konzelman (1990) as "for
tuitous." In fact Gaster's analysis, although predicting a crit
ical Reynolds number of about 480, a significant deviation 
from the experimental value of about 400, is thought to be the 
most sound: therefore it is likely that the differences in the 
main are due to (reproducible) phenomena other than non-
parallel effects. 

In the context of pipe entrance flows, it would seem likely 
that nonparallel effects diminish away from the inlet, as the 
boundary layer curvature reduces: however this remains to be 
proven. Nevertheless, if this statement is true, the observed 
deviations between analysis and experimentation, increasing 
rather than decreasing with axial distance, may be attributable 
to differences between the theoretical and physical disturbances 
superimposed on the base flow. However this argument raises 
the question as to why physical disturbances which are of 
sufficiently correct form (relative to the mathematical for
mulation) to give stability limits which differ only by about 
25 percent from the parallel stability predictions as x^0, should 
deviate so grossly away from the inlet. 

Variations of critical frequency co with x in Fig. 5 shows that 
the present analysis tends quite closely toward the boundary 
layer limit of 0.1193 (Jordinson, 1970). The papers of Garg 
(1981) and Huang and Chen (1974) presented comprehensive 
variations of co and a only for the nonaxisymmetric case and 
to is shown for comparison purposes here. On the basis of the 
neutral stability curves presented by these authors it may be 
inferred that the axisymmetric and nonaxisymmetric cases ap
proach one another with diminishing values of x, rendering 
the comparison reasonable in the limit x—0. Of the analyses, 
once again the data of the present work is seen to approach 
closest to the boundary layer limit. 

5 Conclusion 
(i) It is likely that the major cause of discrepancy between 

various analyses investigating the stability of pipe entrance 
flows may be ascribed to the varying accuracies with which 
base flow velocity, first derivative and second derivative data 
are calculated. 

(ii) Representation of present and previous results scaled 
with respect to displacement thickness consolidates the data 
and provides a valid means of evaluating the correctness of 
their tendencies in the boundary layer limit. Arising from this 
the current scheme is adjudged more accurate than previous 
ones because it more closely approaches the accepted asymp
totic limits of Re6* = 520 and co = 0.1193 at the pipe inlet. This 
may be ascribed to the fact that it uses an accurate eigenvalue 

64/Vo l . 116, MARCH 1994 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



solver coupled with the base flow solver using successive mesh 
refinement. 

(iii) Subject to the assumption that the theoretical variations 
of 5* are applicable to Sarpkaya's (1975) experimentation, his 
results conform fairly closely to the measured boundary layer 
limit, i.e., Re6*—~ 400 as x—0. 

(iv) Parallel flow predictions of critical Reynolds number 
based on displacement thickness exceed measurements by a 
minimum of about 30 percent toward the inlet, increasing 
rapidly downstream. The non-parallel boundary layer com
putation of Gaster (1974), asymptotically valid at the pipe inlet, 
overpredicts measurements by about 20 percent. It seems likely, 
therefore, that nonparallel effects contribute only about 10 
percent to the discrepancy between measurement and parallel 
flow predictions for the boundary layer case and by inference, 
at the pipe inlet. Therefore, this would be the maximum con
tribution of the nonparallel effect, for the reason that stream-
wise rates of variation diminish away from the pipe inlet. 
Consequently, this work effectively questions the commonly 
held belief that an analysis embodying streamwise variations 
would resolve the theoretical/experimental disagreement. In 
fact it seems that the finite amplitude nature of the applied 
disturbances, and possible bypass mechanisms, may be central. 

In view of the fact that Sarpkaya (1975) applied the same 
precautions (quality of the applied disturbances) throughout 
his experimentation, it is possible that the growing deviation 
with x may be attributed to an increasing sensitivity of the 
stability results to the nature of the disturbances as the flow 
becomes less boundary layer like, further downstream. More 
experimental work is required toresolve such issues. 
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Steady Laminar Fluid Flow 
Through Variable Constrictions in 
Vascular Tube 
Steady laminar flow fields in the neighborhoods of two consecutive constrictions in 
a vascular tube were studied for approaching Reynolds number Re in the range of 
5 to 200. The upstream stenosis was set at a dimensionless diameter constriction Cj 
of 0.5 while the downstream stenoses were allowed to vary from c2 = 0.2 to 0.6. The 
proximity of the constrictions was determined by the spacing ratio of S/D = 1, 2, 
3, and <x. When c2>C\, a recirculation zone filled the valley between the two 
constrictions with little changes to the separation and reattachment points as Re 
was further increased. For c2<c{ and when Re was increased, the recirculating eddy 
formed downstream of the first constriction tended to spread beyond the region of 
the second constriction. This resulted in negative wall vorticity peak occurring in 
the region of the second constriction for smaller S/D at high Re. 

Introduction 
The possibility that hemodynamic factors may participate 

in the genesis and proliferation of atherosclerosis has fostered 
increased study of flow through constrictions during the past 
decade (Deshpande et al., 1976; Ahmed and Giddens, 1981; 
Back et al., 1986). One of the recent research interest concerns 
the relationship between the location of vascular disease and 
the magnitude of wall shear stress. There are two contradictory 
views: that the mass transfer rate is small in a low wall shear 
stress zone (Caro et al., 1971), where the flow stagnates, and 
conversely, that the endothelial cell might be damaged in a 
high wall shear stress zone (Fry, 1968). It seems worthwhile 
from the fluid dynamics point of view, therefore, to develop 
reliable numerical methods of identifying regions of very high 
shear and normal stresses in the flow (haemolysis), regions of 
very low or very high shear stress at walls (atheromatous le
sions), and the extent of separated or reversed flow regions 
(thrombosis). 

For single constriction flow, research investigations are nu
merous. Numerical studies of flow and pressure fields with 
various single constriction profiles and inflow conditions at 
different Re ranges were investigated by Lee and Fung (1970, 
1971), Young and Tsai (1973), Oberkampt and Goh (1974), 
Bentz and Evans (1975), Deshpande et al. (1976), Mueller 
(1978), Wille (1980), and O'Brien and Ehrlich (1985). Velocity 
measurements in the neighborhood of constrictions in rigid 
tubes were investigated by Ahmed and Giddens (1981). Flow 
visualization of streamlines in steady flow through constric
tions was obtained by Siouffi et al. (1984). Measurements and 
prediction of flow through a replica segment of a mildly ath
erosclerotic coronary artery were done by Back et al. (1986). 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
June 16, 1992; revised manuscript received May 24, 1993. Associate Technical 
Editor: N. A. Cumpsty. 

The influence of the upstream constriction on the flow field 
near the downstream constriction of various diameter con
striction ratios was considered by few researchers. In experi
mental work, one of the main reasons is due to the difficulties 
in manufacturing accurately the double constrictions required 
for these types of studies. One such attempt was by Dreumel 
and Kuiken (1989). Sharp-edge constrictions in rigid perspex 
tubes was used. The constrictions are of trapezoidal shapes. 
As a result, the point of separation is fixed at the sharp edges 
of the trapezoidal constrictions irrespective of the Re. These 
approximations to the vascular constriction problems are not 
satisfactory nor realistic. Thus, no attempt was made to com
pare the present results with the results obtained by Dreumel 
and Kuiken. In the present work, a vascular tube with double 
stenoses of realistic bell shaped Gaussian normal distribution 
profiles was studied. Multiple constrictions in diseased vascular 
tube occurs because of the formation of the primary constric
tion results in downstream circulation flow. The downstream 
circulation in time will accumulate particles and formed a 
secondary constriction. The dynamics of the flow describing 
separation, reattachment, and the formation of recirculation 
eddy for the above multi-constrictions flow are studied through 
the streamline, velocity and vorticity fields in the present in
vestigations. 

Problem Formulation 
Constant fluid properties are assumed and the flow is con

sidered axisymmetric and laminar. The dimensionless govern
ing equations representing the fluid flow through the 
constrictions (Fig. 1) in their unsteady form are: 

6 7 * + dr* + dz* -Re\dr*2 + dz*2 r*dr*~r*2) W 
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Fig. 1 Model of stenoses with different degree of constrictions 

and the vorticity-stream function equation 

t i (dY dY 1 df 
f ~r*\dr*2 dz*2 r* dr* 

(2) 

The velocities are given by 

* 1 dip * 1 dip 

r dz r dr 

where the dimensionless variables are defined as: r* = r/a0; z* 
= z/a0; v* = vr/vx; v*z = vz/vx\ V = ̂ p/(w»ao); f* = f/ (Uoo/a0); 
/* = t/(ao/v„) and Re = v^a^/v. 

For expressions subsequent to Eq. (3), * is dropped for 
simplicity. 

In dimensionless form, the geometry of the constrictions is 
described by the following bell-shaped Gaussian distribution 
profile 

f(z) = 1 - c,exp ( - cs(z~Si)2) (4) 
where 

c, = constriction ratio (D-dc,)/D 
C, = a shape constant 
Sj = dimensionless distance of constriction from inlet plane 

For the variable double constrictions considered here (Fig. 
1), C\ = 0.5 for the first constriction and c2 has values from 0.2 
to 0.6 for the second constrictions; the shape factor cs = 0.4; 
the distance s,- = s{ for Zi < z < z2\ the distance s, = s2 for z3 < z < Z4 
and c, = 0 elsewhere. Z\, z2 are the upper and lower limits of 
the first constriction; z3, z4 are the upper and lower limits of 
the second constriction. su s2 are the distance of the first and 
second constriction from the inlet plane, respectively. The 
spacing between the two constrictions is given by S= (s2-Si) 
and Si = 2.0 in this study. When the dimensionless spacing ratio 
S/D=<x, this is equivalent to a single constriction tube with 
Ci = 0.5, cs = 0.4, s, = Si for z\<Z<z2 and c, = 0 elsewhere. 

For the present study, the incoming flow is assumed to be 
Poiseuillean and outflow is assumed unrestrictive. Non-slip 
boundary condition is assumed for the tube wall. The flow is 
assumed symmetric about its axis, i.e., 

Fig. 2 The computational space with variable mesh system 

At the inlet 

At the outlet 

Along the tube axis 

Along the tube wall 

vr = 0; vz = (l-r2) 

d2t n aV 
^ = 0 : dz1 

dv7 
Vr-0; - = 0 

vr=vz = 0 

(5) 

(6) 

(7) 

(8) 

The boundary stream function values follow closely from 
that of the velocity boundary conditions described above, ip = 0 
is arbitrarily chosen along the axis of the tube. The boundary 
values of vorticity and velocities follow that of the stream 
function boundary values. 

The wall-vorticity distributions are of considerable interest 
to researchers as it is related to the wall shearing stress per 
unit area through 

TWM = (pw<x/a0)£w (9) 

where v is the kinematic viscosity of the fluid, a0 is the radius 
of the unconstricted tube, fw is the dimensionless wall vorticity 
value. 

Numerical Solution 
The tube with the bell-shaped constrictions are mapped into 

a rectangular solution domain (Fig. 2): 

e = Fl(z)=Z 

v=F2(r,z)=r/f(z) (10) 

Expressing the partial derivatives in the new coordinates, 
the governing equations and boundary conditions can all be 
expressed in the e-r; system. 

The domain in the e-r; coordinate system as defined by Eq. 
(10) is a rectangular region (Back et al., 1977). In order to 
obtain better resolution of the solution near the wall regions 

N o m e n c l a t u r e 

(r,z) = 

a0 

Ci = 

c2 = 

D = 

dc = 
L = 

coordinates in the original slt s2 = 
cylindrical coordinate system 
radius of the tube having a 
constant cross section (a0 = S = 
D/2) 
upstream constriction, Cj = vr = 
{D-dc{)/D 
downstream constriction, c2 vz = 
= (D-dc2)/D 
diameter of the tube having va = 
a constant cross section 
opening of the constriction Z\, z2 = 
length of the tube 

distance of first and second 
constrictions from inlet 
plane 
spacing between constric
tions, S = (s2-Sj) 
radial (r-direction) velocity 
component 
axial (z-direction) velocity 
component 
centerline axial velocity at 
inlet 
limits of first constriction 
[Eq. (4)] 

Zi, Z4 

(r/, e) 

* 

r t 
Re 

P 
P 
V 

w 

— 

= 

= 
= 
= 
= 

= 
= 
= 
= 

limits of second constriction 
[Eq. (4)] 
coordinate variables in the 
transformed coordinates sys
tem 
stream function 
vorticity 
time 
approaching Reynolds num
ber, Re = Va,aa/v 
pressure 
density 
kinematic viscosity 
relaxation factor in the SOR 
method 
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S/0 = 1 

S/0 = 2 

S/D = 3 

S/0 = oo 

REYNOLDS NUMBER = 25 

Fig. 3 Typical streamlines and vorticity contours c , = 0 . 5 , c2 = 0.6, 
Re = 25 

while preserving the second order accuracy of the finite dif
ference scheme, the rectangular solution domain is overlaid 
with the non-uniform mesh as shown in Fig. 2 and given by 

F^-sin-^ + OS)"2) (11) 
•K 

At the node points of the domain defined by Eq. (11), the 
finite-difference solution to the governing Eq. (1) and bound
ary equations in the e-17 coordinates, are obtained through an 
Alternating Direction Implicit (ADI) procedure proposed by 
Samarskii and Andreev (1963) with a weighted time-step factor 
a = 0.5. Successive over-relaxation (SOR) with a relaxation pa
rameter of co = 1.1 was used to solve the vorticity-stream func
tion Eq. (2). All spatial derivatives are approximated by second-
order-accurate central differences. The convective terms in Eq. 
(1) are approximated by second-order upwind differencing 
method. Three-point backward and forward difference for
mulae are used for derivatives at the boundaries. 

Monotonic convergence towards a grid-independent value 
is found for all the solutions obtained here. An estimation of 
the grid-independent values can be made by applying the Rich
ardson extrapolation. Assuming second-order behavior, the 
"exact" values of the solution field are obtained from 
$ = */, + [$^-$2^]/3. Since the convergence errors were kept 
below 0.001 percent in the present solutions, the results of the 
above extrapolation are assumed to have errors an order of 
magnitude lower than the finest grid solution. The mesh sizê  
used for the solutions illustrated here is 21 X 151. Other so
lutions with grid refinement of 41 X 301 were also investigated 
to ensure that the solutions obtained were mesh independent 
for the range of parameters considered here. The location of 
the downstream boundary was studied for L/dc= 12, 14 and 
16 to ensure that there is no influence on the upstream solution 
fields due to the outflow boundary location. Studies show that 
L/dc= 12 is sufficient for the present solutions. 

The steady-state solution of Eqs. (l)-(3) is said to have been 
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S/D = 1 

S/D = 2 

S/D = 3 

S/D = ~ 

REYNOLDS NUMBER = 50 

Fig. 4 Typical streamlines and vorticity contours c, = 0.5, c2 = 0.2, 
Re = 50 

reached when a difference of 0.001 percent of referenced values 
of \p and f is detected. This has proven satisfactory. The stream-
function contours, the velocity fields and the vorticity contours 
are noted to be steady after the above criteria are satisfied. A 
check on the mass flux balance was also made for all of the 
solutions obtained here. The maximum mass flux difference 
with respect to the inlet mass-flux for any of the test section 
results obtained is only of the order of 0.001 percent. All the 
computations here were made on the IBM 3081 mainframe 
computer with a typical CPU time of about 300 sec per solution 
run. 

Results and Discussions 
For a given Re, typical streamlines and vorticity fields at 

different proximity (S/D) of the constrictions in the present 
study are shown in Fig. 3 for c2>cx at Re = 25 and in Fig. 4 
for c2 < C] at Re = 50. Studies of the numerous similar flow 
fields for (̂  = 0.5 with c2>c{ show that, a recirculation zone 
usually fills the valley between the two constrictions for small 
S/D ratios, with little changes to the separation and reattach
ment points as Re is increased. A separation streamline divides 
the flow into two parts: a recirculating flow field between the 
two constrictions and the main flow field near the center of 
the vascular tube with relatively straight and parallel stream
lines. Streamlines and vorticity fields in similar studies for 
Ci = 0.5 and c2<cl show that as Re increases, the recirculating 
eddy between the two constrictions spread beyond the second 
constriction, merging with the eddy that formed behind the 
second constriction. 

Figure 5 shows the separation and reattachment points for 
(a) c,=0.5 and c2 = 0.6 and (b) ^=0.5 and c2 = 0.6 with 
various S/D and Re. With increasing Re, the point of sepa
ration of the eddy is seen to move slightly upstream from the 
constriction surface; and the point of reattachment of the 
recirculating flow moves downstream. In the double constric-
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Fig. 5 Separation and reattachment of flow (a) c, = 0.5, c2 = 0.5; (b) c, = 0.5, c, = 0.6 
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Fig. 6 Velocity profiles and wall vorticity distributions c,=0.5, c2 = 0.6: (a) S/D = 1; (b) S/D =3 
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Fig. 7 Velocity profiles and wall vorticity distributions c, = 0.5, cz = 0.2: 
(a)S/D = 1;(D)S/D = 3 
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Fig . 8 Compar i son of wa l l vo r t i c i t y va lues c, = 0.5, c2 = 0.0 (or S/D= oo) 

tion tube for Ci = 0.5 and c2 = 0.6, flow separation starts at 
Res5 downstream of the second constriction. With C] = 0.5 
and c2 = 0.2, flow separation starts at Res 10 downstream of 
the first constriction and at Res50 behind the second con
striction. For ci = 0.5 and c2s0.0 or S/D-~oo, the flow sep
aration starts at Res 10 and approaches the characteristics of 
the single constriction flow. 

The velocity vectors in Fig. 6 and Fig. 7 for S/D= 1 and S/ 
D = 3 for Re= 10, 100, 200 show that as fluid flows into the 
converging section, the parabolic velocity vector profiles point 
towards the tube axis. Elongation of the velocity vectors is 
observed indicating an accelerated flow through the constric
tion. Beyond the narrowest constriction, the velocity vectors 
point away from the tube axis with a corresponding decelerated 
flow. The formation of the weak recirculation region is in
dicated by the small reverse velocity vectors near the wall. For 
Fig. 8 with c2 = 0.6, the velocity profiles at both constrictions 
are distinctly dissimilar due to the higher second constriction 
ratio. While the velocity profile at the first constriction is 
parabolic at low Re, the velocity profile at the second con
striction is nearly triangular indicating a sharp velocity gra

dient. For Fig. 7, with Re = 200 at S/D= 1, it is observed that 
the negative velocity vectors near the wall extend over the 
second constriction, indicating the merging of the recirculation 
behind the first constriction with that of the second constric
tion. 

The wall-vorticity values are shown in Fig. 6 and Fig. 7. 
The magnitude of the wall vorticity values increase rapidly 
when the flow approaches the constriction and reaching a peak 
value near the maximum constricted area. At higher Re, the 
peak wall vorticity value was found slightly upstream of the 
maximum constricted area. At a location downstream of this 
peak value, the wall vorticity decreases rapidly and reverses to 
negative values when separation begins at the wall of the tube. 
For the first constriction, it is observed that the peak wall 
vorticity value increases with increasing Re. For Ci = 0.5 and 
c2 = 0.2 with increasing Re, the merging of the recirculating 
eddy from the first constriction with the eddy formed behind 
the second constriction resulted in a negative wall vorticity 
peak occurring at the second constriction. However, for C\ = 0.5 
with c2 = 0.6, the maximum wall vorticity at the second con
striction (fmax,2) m tn e present investigation is found to be 
nearly twice that of the first constriction (fmax,i). It was also 
observed that the rate of increase of fmaxa for the first con
striction with Re was higher than for fmax,2 of the second 
constriction. 

Attempts were made to compare experimental results with 
the present double constrictions work. However, no suitable 
experimental results were available in the literature. The pres
ent study with c2 = 0.0 or S/D-~ oo is similar to the study of a 
single constriction flow in the vascular tube. Hence, for the 
purpose of comparison and verification of results, computer 
solutions were obtained for Ci = 0.5, c2 = 0.0 and compared 
with Lee and Fung (1970) results of Re = 5 to 25. Another 
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similar study was performed by Deshpande et al. (1976). The 
comparative results are all presented in Fig. 8. Lee and Fung 
assumed that the outflow was Poiseuille (i.e., vz =/(/•); vz = 0). 
In order to maintain a fixed physical domain for their inves
tigation Deshpande et al. (1976) assumed at the outlet of the 
solution domain, the condition of (dvz/dz) = (dvr/dz) - 0 ap
plied. The present study assumes an unrestrictive flow at the 
outlet and allows the flow profile to develop on its own. Nu
merical investigations showed that the results obtained for the 
present study falls between the two different methods used by 
Lee and Fung (1970) and Deshpande et al. (1976), respectively. 
The present method of specifying the boundary conditions for 
the flow, which allows the flow to develop by itself, is believed 
to perform better. The proposed method of handling the 
boundary conditions allows one to select a fixed solution do
main and to extend the computation into higher Reynolds 
number flow regime without numerical instability. 

Conclusion 
The effects of fluid flow passes through two adjacent con

strictions (C], c2) are numerically studied. Effects on flow 
streamlines, velocity, vorticity, separation—reattachment 
points, and wall vorticity distribution are investigated. For 
Ci=0.5 with C2>C\ and small constriction spacings, recircu
lation tends to fill the valley region between the two constric
tions with little changes to the separation and reattachment 
points as Re is increased. For Ci = 0.5 with c2<C\ with small 
spacing ratios, the recirculating eddy between the two con
strictions tends to merge with the eddy formed downstream 
of the second constriction when Re is increased. This produces 
negative wall vorticity peak near the second constriction. For 
C\ = 0.5 and c2 = 0.6, the maximum wall vorticity at the second 
constriction is nearly twice that of the first constriction. How
ever, the rate of increase of the maximum wall vorticity with 
respect to Re is higher for the first constriction than it is for 
the second constriction. If no merging or interaction of the 
recirculation eddies occurred, the maximum wall vorticity near 
each constriction would increase with Re and S/D. 
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Toward a Pointwise Turbulence 
Model for Wall-Bounded and Free 
Shear Flows 
A modified version of the Baldwin-Barth k-(R two-equation turbulence model is 
proposed, in which the near-wall function /M is based on the ratio of the large eddy 
and the Kolmogorov time scales. This results in a model applicable to both wall-
bounded and free shear flows which, nevertheless, does not require explicit knowl
edge of local distance to walls, rendering it useful within both structured and un
structured computational frameworks for flow predictions involving complex 
geometries. The new model's predictive capability is demonstrated through a number 
of flow cases. 

Introduction 
The modeling of turbulence in near-wall regions usually 

involves distance to wall as an explicit parameter in the for
mulation. When dealing with complex flows involving multiple 
surfaces, the notion of wall distance becomes difficult to define 
properly and is often cumbersome to implement. It is, there
fore, desirable to develop a model which, while applicable all 
the way to solid surfaces, does not involve wall distance ex
plicitly. Such a model is described in this paper, based on the 
concept of large- to small eddy time scale ratio. The present 
approach utilizes this scale ratio as a basic parameter to con
struct the near-wall function /^ which extends the validity of 
the k-<R two-equation turbulence model (Baldwin and Barth, 
1990) to near-wall regions, where damping and molecular vis
cosity effects are important. Consequently, the resulting model 
does not require explicit knowledge of distance to walls, mak
ing it a potentially useful tool in conjunction with both tra
ditional structured grids and the increasingly popular 
unstructured grids for numerical computation of wall-bounded 
and free shear flows involving complex geometries. 

A pointwise k-e model was introduced by Launder and 
Sharma (1974). That model includes terms which involve 
d\fk/dy and d2U/dy2, making it numerically "stiff" in near-
wall regions. This demands careful choice of initial profiles 
for U, k, and e, to avoid severe computational transients. The 
k-6i model has a major advantage over this k-e model: since 
(R = k2/? naturally vanishes at solid surfaces, there is no need 
for extra terms in the (R equation, unlike the situation with 
the e equation. This renders the k-(k model much more robust 
and permits simple flow-field initialization. 

The performance of the new model is demonstrated through 
comparison with experimental data of several well documented 
flow cases. All the examples were initialized with freestream 
conditions and with constants for k and (R. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
October 7, 1992; revised manuscript received August 16, 1993. Associate Tech
nical Editor-. G. Kamiadakis. 

Model Formulation 

The starting point of the present work is the k-Oi model of 
Baldwin and Barth (1990) which consists of the solution to the 
following two coupled partial differential equations: Turbu
lence kinetic energy (k) equation 

^ = v . [ ( , w ^ ) v * ] + P (pk) 

Dt 

eddy viscosity (flt) equation 

D(R 

p(R ' (1) 

Dt pk 

- ( 2 - C e 2 ) / c - - W V ( R (2) 

where the turbulence production term is given in terms of the 
Boussinesq concept 

P = 
BU, M 2 8Uk \ 2 

Here k is the turbulence kinetic energy; (R = k?/e is the un
damped eddy viscosity; p is the density; £/,- are the cartesian 
mean velocity components; ji and v are the molecular and 
kinematic viscosities, respectively; fi, and v, are the correspond
ing eddy viscosities; x, are the cartesian coordinates; and t is 
time. The model constants are those of the standard k-e model, 

a* =1.0, a, = 1.30, Q , = 1.44, C£2=1.92. 

The eddy viscosity is then given by 

" / = C ^ ( R (4) 

where v, = /*,//>, and C,, = 0.09. 
The role of the function /,, is to extend the validity of the 

model to near-wall regions, where anisotropy and molecular 
effects are significant. The ratio of the energy containing (large 
eddy) and the dissipative (small eddy, or Kolmogorov) time 
scales is used as the basic parameter to define the near-wall 
function. This ratio is given by 3 = (k/e)/(v/e)xn = 
k/\]7e = (<R/v)W2 = Rl

T
/2. RTis commonly called the "tur-
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Fig. 1(b) Flat plate flow: comparison of velocity profile with law-of-the-
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bulence Reynolds number." A promising choice for/,, belongs 
to the family of functions given by 

/ , = 
l-e' 

1 - e " 
(5) 

In the current work the following values were used: A^ = 2.5 
x 10~6, At = CIM/2K (K = 0.41), and « = 2. This choice 
enables good prediction of the law-of-the-wall and of near-
wall energy budget for flat plate flow at zero pressure gradient, 
as shown in the next section. (Launder and Sharma (1974) used 
the near-wall function/, = exp{-3.4/(1 + RT/50)2}.) 

Equations (1) and (2) are subject to the following boundary 
conditions: 

(i) Solid Walls 

k=0, (R = 0, (6) 
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Fig. 1(c) Flat plate flow: near-wall production and dissipation profiles 

dk n d(R n 
— = 0, — = 0 (7) 
dy dy 

where y is the normal-to-surface direction, 
(iii) freestream (and initial) conditions 

k/Ui{=10~6, ( R / f r e f « l . (8) 

In the examples, a value of (R/vref = O(10~5) was used. The 
new two-equation k-(R model, Eqs. (l)-(8), is completely point-
wise. 

The near-wall relation between (R and k is also of interest. 
Neglecting the material derivative term and taking into account 
the fact that v, « v at the immediate vicinity of walls, Eq. 
(1) assumes the approximate form 

d2k k2 

(9) 

The near-wall production term reduces to 

P=lx[(dU/dy)2=Cll(Ali/A€)P<R(dU/dy)2 (10) 

when Eqs. (4) and (5) are used, the latter in its near-wall limit. 
Also, the stream wise momentum equation reduces to 

3U/dy = u2/v, «7 = V(r/p)„an. (11) 

Combining Eqs. (9)-(ll) and switching from (R to RT then 
yields 

C^/A^ulRl+v2 S?k 

dy2 RT~k2 = 0. (12) 

(ii) symmetry surface 

Since RT vanishes at walls, and assuming that d2k/dy2 remains 
finite there, the first term in Eq. (12) may be neglected relative 
to the second term, whence 

RT~7^7d?' y~°- (13) 

Thus, if k ~ y2 then RT ~ y4 as y — 0, consistent with the 
corresponding asymptotic behavior of &Ve. 

Examples 

The pointwise k-(R turbulence model was included in the 
USA Reynolds-averaged Navier-Stokes structured grid flow 
solver, which is a highly (up to 3rd order) accurate solver based 
on a TVD formulation for the convection terms within a finite 
volume framework (Chakravarthy et al., 1988). The model 
was also incorporated into Wilcox's (1993) SUBLAYER flow 
solver. Four flow cases are reported here. 

Case 1. This is the case of subsonic flow over an adiabatic 
flat plate with zero pressure gradient, considered a standard 
case for calibration and testing of turbulence models. Figure 
1(a) shows comparison between calculation and data (Wiegh
ardt and Tillmann, 1951) of skin friction along the plate. The 
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computations were done on two grids: a cartesian and a highly 
skewed one, both with the same mesh density. The results 
demonstrate the immunity of the pointwise model to grid skew-
ness. Figure 1(b) compares two near-wall velocity profiles, at 
x = 1.22 and 5.0 m, with law-of-the-wall measurements by 
Laufer (1952), Andersen et al. (1972), and Wieghardt (Coles 
and Hirst, 1969). A 110 x 50 grid size was used, with at least 
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14 cells inside the viscous sublayer (y+ < 11). The first point 
off the wall was at y+ = 0.1. Residuals were reduced by five 
orders of magnitude by the time the solution was converged. 
A 110 X 100 grid was also used, yielding the same results. 

A near-wall computation was also performed using Wilcox's 
(1993) SUBLAYER code. Figure 1(c) compares near-wall en
ergy balance with experimental data of Laufer (1952) and with 
DNS results of Mansour et al. (1988). The figure includes 
prediction by Wilcox's Ar-w model (Wilcox, 1993) used with its 
near-wall functions. 

Case 2. This is the transonic flow over an axisymmetric 
bump of Bachalo and Johnson (1979). Here a normal shock, 
impinging on the bump, causes flow detachment from the 
surface with subsequent reattachment further downstream on 
the cylindrical surface. A sketch of the geometry with main 
flow features is included in Fig. 2(a). In Figs. 2 x is the axial 
coordinate, with origin at the bump leading edge; and y is the 
radial coordinate, with origin at the axis of symmetry. Figs. 
2(a), 2(b) present comparisons between predictions and data 
of surface pressure (p„) and skin friction (Cj) distributions. 
All lengths are scaled by the bump cord, c, and pressure is 
scaled by the upstream total pressure, pT. The extent of flow 
separation is seen by the region of negative skin friction in 
Fig. 2(b). Figs. 2(c), 2(d), and 2(e) compare predictions with 
data of velocity, turbulence kinetic energy, and Reynolds 
stresses, respectively, at two streamwise locations. A 101 x 
50 grid size was employed, with at least three cells inside the 
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Fig. 4 Thin airfoil wake flow: velocity and Reynolds stress profiles 

ramp corner (due to upstream influence), induces flow de
tachment, with subsequent reattachment onto the ramp sur
face. Figures 3 show predictions and data comparisons of 
surface pressure, skin friction, and corner velocity profile. A 
sketch, showing the geometry and some flow features, is in
cluded in Fig. 3(a). The origin of the (x, y) cartesian coordinate 
system is located at the ramp corner, with directions along and 
normal to the upstream flat plate, respectively. These coor
dinates are scaled by the boundary layer thickness upstream 
of the shock, 50- Wall pressure (pw) is scaled by the upstream 
inflow pressure (>„). The extent of flow separation is seen in 
the skin friction plot, Fig. 3(b), in the region where Cf < 0. 
A 125 X 50 grid size was used, with at least four cells within 
the viscous sublayer. Again, a four orders of magnitude re
duction in residuals was achieved by the time of solution con
vergence. 

Case 4, This is a subsonic two-dimensional flow over a 
thin symmetric wing, with experimental data by Pot (1979) 
taken in the wake region. This case is particularly illuminating 
since the model is expected to detect automatically the switch 
from wall-bounded to wake flow and build the eddy viscosity 
field accordingly. A 104 x 75 " C " grid was used, with two 
cells inside the viscous sublayer over the wing. Figure 4 shows 
a sketch of the geometry, indicates the coordinate system and 
compares data of wake velocity and Reynolds stress profiles 
with predictions by the current model as well as by the Baldwin-
Lomax algebraic turbulence model. Six orders of magnitude 
reduction in residuals was obtained when the solution con
verged. 

Conclusions 
This work demonstrated the feasibility of utilizing a point-

wise k-(R model for predicting wall-bounded and free shear 
turbulent flows at the level of detail usually needed for engi
neering analysis and design purposes. Since the model does 
not require explicit knowledge of distance to solid surfaces, it 
is most suitable for use with Navier-Stokes solvers which in
corporate unstructured computational grid frameworks. As 
shown in the examples, the model is naturally applicable to 
traditional structured grids, in which case reduced effort in 
constructing multi-block grids is attainable thanks to the 
model's pointwise attributes. 

viscous sublayer. By the time the solution was converged, there 
was a four orders of magnitude reduction in residuals. 

Case 3. This is the supersonic two-dimensional flow over 
a 24 deg ramp of Settles et al. (1979), with additional data by 
Dolling and Murphy (1983), and by Selig et al. (1989). An 
oblique shock, impinging on the boundary layer ahead of the 
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Efficient Simulation of Short and 
Long-Wave Interactions With 
Applications to Capillary Waves 
A perturbation expansion and a multigrid technique are developed for simulating 
the fully-nonlinear unsteady-interaction of short waves riding on long gravity waves. 
Both numerical techniques are capable of simulating wave slopes near breaking and 
wavelength ratios greater than thirty, but the multigrid technique converges more 
rapidly and it is more efficient. The results of numerical simulations agree quali
tatively with experimental measurements of ripple formation on the front face of a 
gravity-capillary wave. 

Introduction 
The study of short waves riding on long waves is currently 

an active research area because of remote sensing applications. 
Knowledge of short and long-wave interactions is also required 
to understand how wind energy is transferred to water waves. 
When the orbital velocity of the long waves is comparable to 
the phase velocity of the short waves, a standard theoretical 
approach neglects the energy transfer from the short waves to 
the long waves so that the long wave can be prescribed in 
advance (see Longuet-Higgins, 1987). 

In this paper, two numerical algorithms are developed for 
simulating the unsteady interactions of short waves with long 
waves. A useful feature of both numerical procedures is the 
output of the entire three-dimensional subsurface velocity field. 
Some possible applications of this feature include the study of 
wave scattering by turbulence (Phillips, 1959) and the for
mation of Langmuir circulations (Craik and Leibovich, 1976). 
In both cases a Helmholtz decomposition of the vortical and 
wavy portions of the flow is useful for modeling different flow 
regimes (see, for example, Dommermuth, 1992a). Two nu
merical techniques (a perturbation expansion and a multigrid 
technique) are proposed for efficiently solving the three-di
mensional elliptic equations that are present in Helmholtz de
compositions and other formulations of nonlinear free-surface 
flows. 

The numerical methods are used to study parasitic capillary 
waves, which were first studied experimentally by Cox (1958) 
and theoretically by Longuet-Higgins (1963). Weak viscous 
effects are included based on the boundary-layer analysis of 
Lundgren (1989), and comparisons are made to the experiments 
of Ruvinsky et al. (1991). 

Mathematical Formulation 
The kinematic and dynamic free-surface boundary condi

tions including weak viscous effects are as follows: 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
August 31, 1992; revised manuscript received May 6, 1993. Associate Technical 
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-3/2 

where i\ and <f> are the free-surface elevation and the velocity 
potential, Re, Fr, and We are, respectively, the Reynolds, 
Froude, and Weber numbers, and n is the unit outward point
ing normal. (The definitions of the nondimensional parameters 
are provided in the next section, which is focused on a specific 
type of flow.) Pa is the atmospheric pressure, and the wave 
steepness is denoted by e. Equations (1) are satisfied on the 
exact position of the free surface. Note that Lundgren's (1989) 
analysis includes higher-order viscous terms and allows weak 
shear stresses such as wind forcing. For the present analysis, 
however, the lowest-order viscous effects are sufficient. 

Laplace's equation is satisfied in the interior of the fluid. 
Based on Freeman et al.'s (1972) transformation, let 
Z = F(x,y,z, t) = (z + D)/(r] + D) account for the mapping of the 
free surface onto a flat plane, where D is the depth, and let 
k=G(z) account for grid stretching. These mappings lead to 
the following expression for Laplace's equation: 

*» + 4>yy + (Fl + F) + F\)G\<$>kk + 2FyG&yk + 2FxG^>xk 

-«Fxx + Fyy)Gl + (F2
x + F2

y + F2
z)Gu)$k = 0. (2) 

The first numerical solution that is considered for solving 
the preceding elliptic equation is a perturbation expansion. Let 
<j>m(,x,y,k,t) denote the m-th iterant solution to the velocity 
potential, then the following arrangement of terms provides 
an efficient algorithm for solving Laplace's equation with Dir-
ichlet free-surface boundary conditions: 
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where the terms on the left side of the equation are 0(1) and 
the terms on the right side are 0(e). This ordering of terms 
occurs because <j>, G(z),. and D are O(l) quantities, and the 
x- and.y-derivatives of F(x,y,z,t) are 0(e) for t\/D — 0(e). Since 
Fz-\/D is O(e), the dominant behavior of Fz can be extracted 
by adding appropriate terms to the left and right-hand sides 
of Eq. (2) as in Eq. (3). 

Laplace's equation is discretized using fourth-order finite 
differences in Eq. (3). A Fast Fourier transform with respect 
to x and y leads to a set of one-dimensional Poisson equations 
that are solved using banded LU-decomposition. The source 
term on the right-hand side of the equation is updated, and 
the solution scheme repeats itself. Generally, for moderate 
nonlinearity (e<0.3) only two to four iterations are required 
because a good approximation to the potential is available 
during each stage of the fourth-order Runge-Kutta time-step
ping procedure. An 8th-order smoothing scheme is used to 
inhibit the formation of sawtooth instabilities. Details of a 
similar numerical algorithm are provided by Dommermuth 
(1992a). 

The second numerical algorithm is a preconditioned mul
tigrid solution technique. The preconditioning stage is used to 
reduce the complexity of the multigrid algorithm. Multigrid is 
used to solve a second-order accurate problem which is used 
as a guess to the fourth-order solution. Let £ 2 and £ 4 

respectively denote second-order and fourth-order accurate 
approximations to the elliptic operator in Eq. (2), and let 
4>m = if/m + $m, where i//" is a second-order preconditioner and 
$'" is the fourth-order solution to the Dirichlet problem. Then 
the iterative solution to Laplace's equation proceeds as follows: 

£2V=-£i#
n, (4) 

where initially $° is equal to its value at a previous time step 
and the solution for i//° is obtained using a V-cycle multigrid 
algorithm. Then $ ' is set equal to 0°, where 0o = i/,o + $°, and 
the solution scheme repeats itself until the fourth-order so
lution ($'") has converged. A line Gauss-Seidel algorithm is 
used as a smoother, and the time-stepping procedure is the 
same as the perturbation scheme. Details of a similar multigrid 
procedure for solving the second-order solution to \j/m are pro
vided in Dommermuth and Yue (1990). 

On a Cray Y-MP 8/8128 the perturbation scheme requires 
1.8 CPU seconds (using a single processor) per iteration to 
solve a two-dimensional boundary-value problem with 2562 

unknowns. The multigrid scheme requires 0.9 CPU seconds 
per iteration to solve the same problem. However, as discussed 
in the next section the convergence of the multigrid scheme is 
much more rapid than the perturbation scheme, so that the 
overall efficiency of multigrid scheme is also much greater 

than the perturbation scheme for a given level of accuracy. 
Moreover, recent vectorization efforts have increased the speed 
of the multigrid code by a factor of ten. 

Numerical Simulations 
The convergence of the elliptic solvers is tested using the 

following Dirichlet boundary-value problem: 

7] = a cos (kiX} 4>s = 
cosh (kx (y+D)) 

ki cosh (fc5 (a + D)) 
sin {k\X) 

cosh(k2(-g+D)) 

k2 cosh (k2 (a + D)) 
sin (k2x), (5) 

where i? is the free-surface elevation, 4>s is the value of the 
potential on the free-surface (i.e., the surface potential), a = 0.1 
is the amplitude of the free-surface disturbance, k\ = 2-w rep
resents a long wave, k2=\6ir, 32x, and 64ir represents short 
waves, and D= 1 is the depth. The boundary condition on the 
bottom is no flux. The preceding Dirichlet problem is solved 
using the perturbation and multigrid techniques and then the 
vertical velocity on the free surface (w1) is calculated to test 
the accuracy and the convergence of the numerical algorithms. 

Table 1 illustrates the convergence of the numerical algo
rithms as a function of the number of grid points and iterations. 
The expected fourth-order spatial accuracy is achieved for 
multigrid scheme as the grid resolution and the number of 
iterations increase. (The results of the multigrid scheme in
dicate that 16, 32, and 64 points per short wave, respectively, 
provide 3, 41/2, and 6 digits of accuracy.) However, the con
vergence of the perturbation scheme is not rapid enough to 
realize the fourth-order accuracy because the reduction in error 
at each stage of the iterative process is only proportional to 
the wave steepness. (For the perturbation scheme £oc eN'", 
where 8 is the error, e is the wave steepness, and Nm is the 
number of iterations.) The perturbation scheme is also less 
efficient than the multigrid scheme because of the poorer con
vergence. For example, as shown in Table 1, the multigrid 
scheme converges in less than four iterations, whereas often
times the perturbation scheme has not converged even after 
sixteen iterations. 

For both numerical schemes the number of operations per 
iteration (N,„) is roughly proportional to the number of un
knowns, but the multigrid scheme requires fewer iterations 
than the perturbation scheme to achieve the same level of 
accuracy. The perturbation scheme requires at least N„, = log2 

(k2/k\) iterations so that the higher harmonics of the long wave 
can interact with the short wave, whereas the convergence of 
the multigrid scheme is not sensitive to either the wave steepness 
or the ratio of the long wave to the short wave. The assumptions 
that are used in the perturbation expansion are much less 
stringent than either the Schrodinger or Zakaharov theories, 
but none of these theories is capable of simulating the two-
way exchange of energy between short and long waves. The 
only viable alternative for the simulation of a directional wave 
spectrum with a broad band and strong nonlinearity is a direct 
numerical solution such as multigrid. 

Re = Reynolds number 
Fr = Froude number 

We = Webber number 
p = density 
a = surface tension 
g = gravity 
v = kinematic viscosity 

(x,y,z) = Cartesian coordinates 
z = mapped z-coordinate 

F,G, and H = Mapping functions 
t = time 

T = gravity-wave period 
0 = potential field 
•q = free-surface elevation 
e = wave steepness 
£ = relative error 
E = energy 
X = gravity wavelength 

xr 
Or 
n 

Pa 
D 

( ) ' " 

£ 

= ripple wavelength 
= ripple steepness 
= unit normal on free 

surface 
= atmospheric pressure 
= depth 
= denotes iteration num

ber 
= elliptic operator 
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As an illustration of the multigrid technique's effectiveness, 
consider the formation of ripples on the front face of a gravity-
capillary wave. Let the characteristic length and velocity be 
denoted by Lc= A and Uc = ̂ fgk, where X is the length of the 
gravity-capillary wave and g is gravity. Then the Froude, We
ber, and Reynolds numbers are Fr= 1, We = pgX2/a, and Re = 
gw2\3/2/v, where p is the fluid density, a is the surface tension, 
and v is the kinematic viscosity. The two-dimensional numer
ical simulation is initialized using an exact solution for a gravity 
wave (see Schwartz, 1974 and Dommermuth and Yue, 1987), 
and the parasitic capillaries' are generated from rest due to a 
parametric resonance. This is a stringent test of the multigrid 
technique's effectiveness because a very high harmonic of the 
gravity wave is responsible for forcing the ripples at the crest. 

Table 1 Stokes wave convergence test 
Perturbation scheme 

k2 Nm 

16ir 4 

8 

16 

32TT 4 

8 

16 

6 4 T 4 

8 

16 

K 
128 
256 
512 
128 
256 
512 
128 
256 
512 

128 
256 
512 
128 
256 
512 
128 
256 
512 

128 
256 
512 
128 
256 
512 
128 
256 
512 

S 

4 .6x10" ' 
9 .6x10" ' 
2.0x10° 
1.9X10"2 

3.1X10"2 

5.6X10"2 

1.8x10"' 
2 .0x10"" 
1.9x10"" 

4 .8x10" ' 
1.0x10° 
2.1x10° 
2.4X10"2 

3.2X10"2 

5.9X10"2 

2.4X10"2 

1.9X10"' 
1.9X10"" 

4 .9x10" ' 
1.0x10° 
2.1x10° 
1.5x10"' 
3.3XI0"2 

6.0X10"2 

1.5x10"' 
2.5 x l O " 2 

2 . 0 x 1 0 " ' 

k2 

16ir 

32TT 

64TT 

Multigrid scheme 

N,„ 
4 

8 

16 

4 

8 

16 

4 

8 

16 

Nx 

128 
256 
512 
128 
256 
512 
128 
256 
512 

128 
256 
512 
128 
256 
512 
128 
256 
512 

128 
256 
512 
128 
256 
512 
128 
256 
512 

S 

1.4x10" ' 
6.5X10"' 
2.6X10"6 

1.4x10"' 
6 .5x10" ' 
2.6X10"6 

1.4x10"' 
6 .5x10" ' 
2.6X10"6 

2 . 2 x l 0 " 2 

1.5x10" ' 
6 .5x10" ' 
2 . 2 x l 0 " 2 

1.5x10" ' 
6 .5x10" ' 
2 . 2 x l 0 " 2 

1.5x10" ' 
6 .5x10" ' 

1.6x10"' 
2 . 2 x l 0 " 2 

1.6X10"2 

1.6x10"' 
2 . 2 x l 0 " 2 

1.5x10"' 
1.6x10"' 
2 . 2 x l 0 " 2 

1.5x10" ' 

k2 is the wavenumber of the short wave. Nm is the number of iterations used to 
solve Laplace's equation, and /V, is the number of equally spaced grid points 
along the x- and z-axes. S = I H*1 - w*Imax/1 w"\m^ is the maximum relative error 
in the vertical velocity on the free surface. The initial estimate is 0° = O. The 
multigrid scheme uses Nv=l V-cycles and Ns = 4 Gauss-Seidel sweeps during 
each stage of the preconditioning. 

Table 2 Data for numerical simulations of ripples 

X(cm) 
H/\ 

Fr 

we Re 
L 
D 
N, 

» 
Nt 
Nm 

K 
Ng 

Run 1 

5 
.058 

1 
331 

35,000 
1 
1 

400 
8 

128 
33 
4 
1 
6 

Run 2 

5 
.062 

1 
331 

35,000 
1 
1 

400 
8 

128 
33 
4 
1 
6 

Run 3 

5 
.066 

1 
331 

35,000 
1 
1 

400 
8 

128 
33 
4 
1 
6 

Run 4 

5 
.070 

1 
331 

35,000 
1 
1 

400 
8 

128 
33 
4 
1 
6 

Run 5 

10 
.09 
1 

1,330 
99,000 

1 
1 

1600 
3 

512 
65 
4 
1 
4 

Run 6 

10 
.09 
1 

1,330 
99,000 

1 
1 

800 
3 

256 
65 
4 
1 
4 

Run 7 

10 
.09 
1 

1,330 
99,000 

1 
1 

400 
3 

128 
65 
4 
1 
4 

X is the length of the gravity-capillary wave in centimeters, and H/\ is the ratio 
of the wave height to the wave length. F„ We, and Re are, respectively, the 
Froude, Weber, and Reynolds numbers. L and D are, respectively, the length 
and depth of the computational domain. N, is the number of time steps per 
gravity wave period, where T=> \/2xFr is the dimensionless wave period. Np is 
the number of wave periods that are simulated. Nx and Nz are the number of 
grid points along the x- and z-axes. Nm is the number of iterations used to 
perform the preconditioning. N„ is the number of V-cycles used in the multigrid 
algorithm, and Ne is the number of Gauss-Seidel iterations. 

An atmospheric forcing term is used to adjust the transition 
from a pure gravity wave to a gravity-capillary wave as follows: 

1 l-f 
Pn = 

W£ 
V • n exp (6) 

where 8 = 7is the adjustment time and Tis the nondimensional 
wave period of the gravity wave. This adjustment procedure 
inhibits the generation of spurious high-frequency standing 
waves. Details of similar adjustment procedures are provided 
in Dommermuth'(1992a and 1992b). As shown in the appendix, 
the grid is stretched near the free surface to resolve the ex
ponential attenuation of the capillary waves. Table 2 provides 
other details of the numerical simulations. 

Figures 1 and 2 illustrate the formation of ripples on 5 cm 
and 10 cm gravity-capillary waves. Based on the analysis of 
Longuet-Higgins (1963), the wave length of the ripples (Xr) is 
determined by the condition that the phase velocity of the 
ripples is equal to the phase velocity of the gravity wave (c0) 
plus the local water-particle velocity of the gravity wave (u0). 
In our present notation, this relationship gives Xr = 2ir/ 
(We(c0 + u0)

2). The maximum wave length of the ripple occurs 
near the crest of the gravity wave where c0 + u0 is a minimum. 
This formula gives \ = Q.2\ and 0.069 at the crests of, re
spectively, the 5 cm and 10 cm waves, which agrees with the 
plots in Figs. 1 and 2. The initial steepness of the 5 cm wave 
(e = -KH- .22, where H is the wave height) is less than the 10 
cm wave (e = .28), but the maximum steepness of the ripples 
(6r) is greater for the 5 cm wave (0,-= .24) than it is for the 10 
cm wave (0r«.O6). The explanation is that the harmonic of 

(a) 

(b) 

(c) 

(d) 

Fig. 1 Formation of ripples on a 5 cm gravity-capillary wave. Part (a) 
and (b) plot the initial free-surface elevation and slope. Parts (c) and (d) 
plot the same quantities after three gravity wave periods have elapsed. 
The x-axis has been periodically extended. Details of this simulation are 
provided in Run 4 of Table 2. 
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(a) 

(b) 

(c) 

(d) 

(a) 

Fig. 2 Formation of ripples on a 10 cm gravity-capillary wave. See the 
preceding caption. Details of this simulation are provided in Run 5 of 
Table 2. 

the gravity wave that forces the ripples on the 5 cm wave is 
greater than the forcing harmonic of the 10 cm wave. The 
steepness of the ripples actually exceeds the steepness of the 5 
cm gravity wave. 

In Fig. 3 the convergence of the multigrid scheme is illus
trated using the 10 cm wave. Three numerical simulations with 
different resolutions are used to study the formation of the 
ripples. For these plots r\n are the Fourier coefficients of the 
free-surface elevation, where 

V= YJ nnexp(ik^c) (7) 

and k„ = lirn is the wavenumber. The initial slopes of the spec
tra are very steep, but the subsequent formation of the ripples 
leads to much broader spectra. The slope spectrum becomes 
so broad that it even has some local minimums and maximums. 
We also observe that the spectra of the ripples converge as the 
grid resolution increases, especially at the lowest wavenumbers. 

Figure 4 plots time histories of the amplitude of the gravity-
capillary wave and the maximum steepness of the ripples. As. 
is evident in Fig. 4(a) the attenuation of the gravity-capillary 
waves increases as the ripples form. The ripples form soon 
after the atmospheric forcing term (see Eq. 6)) has diminished 
to 40 percent of its initial value at time t"= T, where recall T 
is the nondimensional wave period of the initial gravity wave. 
Figure 4(b) shows that upon reaching a maximum near time 
t*>3T, the ripples also steadily attenuate, but superimposed 
on top of this attenuation is an oscillation whose period 
(3T< Tr<4T) depends on the steepness of the ripples. A similar 

- ): Initial condition, t=0 
- ): Run 5, i = 3X, Table (2) 
- ): Run 6, t = 3T, Table (2) 
- ): Run 7, i = IT, Table (2) 

(b) 
Initial condition, t—0 
Run 5, t a 3T, Table (2) 
Run 6, I = 3T, Table (2) 
Run 7, t = 3T, Table (2) 

Fig. 3 Amplitude and slope spectra of a 10 cm gravity-capillary wave: 
a convergence study. Parts (a) and (b) are, respectively, the amplitude 
and slope spectra. 

periodic behavior has also been observed in the numerical 
simulations of Ferguson et al. (1978) who use a model equation 
to study various aspects of ripple formation. Aside from Fer
guson et al.'s model equation, previous theories have not ac
counted for this nonlinear recurrence. Moreover, comparing 
Figs. 4(a) and 4(b) shows that a range of ripple steepnesses 
exists as a function of the instantaneous amplitude of the 
gravity-capillary wave. Consequently, laboratory and field 
measurements of ripples will be sensitive to the initial steepness 
of the gravity-capillary wave and the elapsed time since the 
ripples formed. For a free surface that is contaminated with 
surfactants the measurements are even more complex as is 
evident in the experiments of Hsu et al. (1983). 

Figure 5 compares the results of numerical simulations and 
quasi-stationary theory to experimental measurements. The 
theory and experiments are due to Ruvinsky et al. (1991). 
Although the quasi-stationary theory models viscous atten
uation, it does not account for the effects of the initial con
ditions, nor does it model nonlinear recurrence. A few of the 
experimental points and a portion of theoretical curve in Fig. 
5 lie within the envelop of possible solutions that is calculated 
using the present numerical scheme. Since the experiments did 
not account for the exchange of the energy from the ripples 
to the gravity-capillary wave, better agreement is not expected, 
and future measurements will have to rigorously account for 
the effects of nonlinearity. 

Figure 6 plots the total dissipation of energy by viscosity as 
a function of time. The dissipation of energy to leading order 
is 

Re J; 
(<t>x<t>xz + <l>y4>yz + <i>z<l>zz) + O I — ] (8) 
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0.035 

0.026 
4 

t/T 

o: Experiments, Ruvinsky, et al (1991) 
~ ( ): Theory, Ruvuisky, et al (1991) 
( ): Present numerical scheme 

O 

0.05 0.06 

H 

Fig. 5 Maximum ripple steepness: a comparison between experimental 
measurements and numerical simulations. The envelope that is formed 
by the dashed lines is calculated using the extreme values in Fig. 4. 

(b) 

0.20 

0.05 

0.00 

I ' ' ' I • ' ' I 

/ \ I 
Run 1, Table (2) 
Run 2, Table (2) 
Run 3, Table (2) 
Run 4, Table (2)" 

/ 

t/T 

Fig. 4 Attentuation of the amplitude of gravity-capillary wave and the 
maximum steepness of the ripples. Part (a) is the amplitude of the gravity-
capillary wave and Part (b) is the maximum steepness of the ripple near 
the crest of the gravity-capillary wave. 

r 
6.0 r-

Run 1, Table (2) 
Hun 2, Table (2) 
Run 3, Table (2) 
Run 4, Table (2) 

t/T 
Fig. 6 Increased total energy dissipation due to the formation of par
asitic capillary waves. The curves are normalized by the dissipation of 
energy for a pure gravity wave. 

where S0 is the projection of the free surface onto the xy-plane. 
As the ripples form near time t= T in Fig. 6, the total dis

sipation of energy increases. This illustrates that a gravity-
capillary wave with ripples riding on top decays more rapidly 
than a gravity-capillary wave without ripples. This effect agrees 
with the analysis of Lamb (1932), who shows that short waves 
decay more rapidly than longer waves. The gravity-capillary 
wave pumps energy into the ripples, where it dissipates more 
rapidly because the ripples are shorter than the original gravity-
capillary wave. Depending on the steepness of the ripples, Fig. 
6 also illustrates that the formation of the ripples is almost 
seven times more effective in damping the gravity waves than 
the direct action of viscosity. This agrees with the results of 
Longuet-Higgins (1962), who argues that a factor of ten could 
be expected for 6 cm gravity waves. Figure 6, together with 
Fig. 4, also shows that two gravity waves with same amplitude 
may attenuate at different rates depending on the initial con
ditions. 

Conclusions 
Although the perturbation scheme is the natural extension 

to the Zakaharov formalism (see, for example, Dommermuth 
and Yue, 1987), the convergence of the scheme is not rapid 
enough to simulate short wave to long wave ratios greater than 
ten. Consequently, the perturbation scheme relative to the 
preconditioned multigrid scheme is more suitable for narrower 
wave spectrums with moderate nonlinearity. The results of 

numerical simulations using the multigrid scheme agree qual
itatively with laboratory measurements of ripples riding on the 
front face of gravity-capillary waves. At present, nonlinear 
effects that have not been accounted for in the experiments 
preclude better comparisons. A possible extension to the mul
tigrid scheme includes using finite-difference methods with 
higher resolution such as compact schemes (see Lele, 1990) to 
simulate very broad wave spectra. 
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A P P E N D I X 

Grid Stretching 
The grid spacing along the z-axis is stretched to resolve the 

exponential attenuation of the short capillary waves. The po
sitions of the grid points are denoted by zk for \<k<Nz. The 
grid spacing is prescribed in terms of a Hermitian polynomial: 

k-l 

N7-\ 
\<k<N7, (9) 

where the coefficients o, of the Hermitian polynomial H(k) 
are assigned as follows: 

H(\)=\ 

H(Nz)=0 

-Ax 

D 
Hk{\) = -

Hkk{\) = 0 

Hkk(Nz)=0 

Hkkk(l) = 0 

HkickkW = 0, 

where Ax is the uniform grid spacing along the x-axis. This 
mapping allows fewer grid points to be used near the bottom 
of the computational domain where the effects of the capillary 
waves are very small. 
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The Prediction of Velocity and 
Temperature Profiles in Gravity 
Currents for Use in Chilled Water 
Storage Tanks1 

It has been demonstrated that one way of producing thin thermoclines {temperature 
gradients) in a chilled water storage tank is by introducing the water horizontally 
in the form of a gravity current. A gravity current is a fluid intrusion into a body 
of stagnant fluid at a different density. The incoming fluid is introduced at the 
bottom of the body of fluid if it is more dense; it is introduced at the top if it is 
less dense. In the application considered here, chilled water is to be stored in an 
efficient manner under the original body of warmer water. Vertical profiles of 
velocity and temperature in transient, two-dimensional, laminar, thermally driven, 
constant inflow gravity currents are studied. This provides a basis for understanding 
the initial stages of the formation of a thermocline in a chilled water storage tank. 
Two laminar flow formulations were developed to predict velocity and temperature 
profiles in the inertia-buoyancy regime. One formulation uses a strictly numerical 
approach, while the other uses a singular perturbation method to analyze the flow. 
Experimental temperature profiles are compared with the results from both for
mulations, and show good agreement. 

Introduction 
The efficient storage of chilled water requires that a thin 

thermocline or large temperature gradient be established and 
maintained in the storage vessel. To generate a thin thermocline 
little mixing should occur between the incoming chilled water 
and the stagnant warmer water originally in the tank. The 
more dense chilled water will stay near the bottom of the tank 
if it is introduced in the proper manner (Yoo et al., 1986). One 
way to accomplish this is by introducing the water in the form 
of a gravity current because it is almost free of turbulence and 
therefore minimal mixing will occur (Britter and Simpson, 1978 
and Simpson and Britter, 1979). 

Gravity currents have a distinctive head region at the front 
and a relatively smooth laminar region behind the head. A 
sketch of a typical gravity current is shown in Fig. 1. Behind 
the head, the gravity current may be modelled using two re
gions: the "main body" near the floor and the "mixed region" 
above the main body (Nakos, 1987). The main body of the 
gravity current is driven by the buoyancy force, which generates 
a pressure gradient in the horizontal direction and is retarded 
by viscous and inertia forces. The mixed region is pulled along 
by the main body as a result of the viscous forces, and is 
retarded by inertia and shear at the top. There is little buoyancy 

This work was supported by the United States Department of Energy under 
Contract DE-AC04-76DP0079. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
August 6,1992; revised manuscript received March 30,1993. Associate Technical 
Editor: J. A. C. Humphrey. 

force in most of the mixed region, due to the small temperature 
difference with the stagnant tank water. 

Early in the flow the gravity current is controlled mainly by 
inertia and buoyancy forces, producing what is called the in
ertia-buoyancy (I-B) regime. Subsequently, the viscous force 
dominates inertia, and the flow is governed by viscous and 
buoyancy forces, resulting in the viscous-buoyancy (V-B) re
gime. Gravity currents are inherently transient in nature, evolv
ing from the constant velocity I-B regime to the slowly 
decreasing velocity of the V-B regime. The V-B regime was 
modelled by Nakos (1987), and by Nakos and Wildin (1988). 
Only the I-B regime will be studied here. 

Major features of the I-B regime temperature profiles are 
an almost constant temperature region from just above the 
floor to an elevation roughly equal to the top of the inlet 
dif fuser opening and a region of rapidly increasing temperature 
above the top of the inlet. Major features of the I-B velocity 
profiles include a pointed "nose" with large gradients near 
the floor and above the top of the inlet dif fuser opening. 

There have been few known analytical or numerical studies 
on the prediction of temperature profiles in gravity currents 
except Nakos (1987) and Nakos and Wildin (1988). Most of 
the work on gravity currents has been done on saline currents, 
rather than ones with a temperature induced buoyancy force. 
In an extensive experimental study of gravity currents with 
heat transfer, Chobotov et al. (1986), presented temperature 
profiles in addition to velocity data and other gravity current 
characteristics. The application considered by Chobotov, et 
al., was that of gaseous ceiling gravity currents that occur in 
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Fig. 1 Schematic of gravity current 

a hallway fire. Vertical profiles of temperature and velocity 
were assumed, and an analysis was performed mainly to de
termine current characteristics in the direction of the flow. 
Comparison with assumed profiles and actual ones was not 
shown. 

Nakos (1987), and Nakos and Wildin (1988), analyzed lam
inar gravity currents with a thermally induced buoyancy force 
and showed that they could be modelled with good agreement 
with experimental data. In Nakos (1987), two methods in the 
I-B regime and one in the V-B regime were introduced. In 
Nakos and Wildin (1988), the focus was on I-B and V-B regime 
comparisons. This work develops the work in the I-B regime 
by analyzing the two formulations originally introduced in 
Nakos (1987). Those two methods will be called the "numer
ical" and "perturbation" formulations. 

This paper analyzes the first pass of a gravity current on a 
horizontal floor. The first pass refers to the flow of the gravity 
current before it reaches the end wall of the tank. Turbulence 
and the effects in the head are ignored because one of the 
objectives of this study was to develop a relatively simple model 
that could predict the basic shape of the thermocline, without 
excessive complexity. The region in which the gravity current 
flows is assumed to be of infinite length. With this formulation, 
the velocity of the head and initial stages of the flow cannot 
be accurately predicted. However, this does not preclude pre
diction of the velocity and temperature profiles behind the 

head. The results from the two formulations are compared 
with experimental data. 

The following sections discuss the analytical and numerical 
methods used to solve for the temperature and velocity profiles. 
The results of the numerical predictions and several conclusions 
are contained in the remaining sections. 

Analysis 

Inertia-Buoyancy Regime: Numerical Formulation. Neglect
ing turbulence and the details of the head, the non-dimensional 
governing equations of a laminar, incompressible, transient, 
two-dimensional gravity current in Cartesian coordinates using 
an Eulerian frame of reference can be developed. The ̂ -mo
mentum equation does not appear explicitly for reasons stated 
below. Additional assumptions used in the derivation of these 
equations are the following: 

1) Density variations are ignored except in body force term 
in the ^-momentum equation. 

2) Assume constant specific heat, thermal conductivity and 
viscosity and assume free surface pressure is constant. 

3) Assume small vertical velocity as compared to the hor
izontal velocity, resulting in a hydrostatic pressure variation 
in the vertical direction. 

4) Second partial derivatives in the horizontal direction 

Nomenclature 

a, = thermal diffusivity, inlet value (k/ 
CpPd 

cp, k = specific heat, thermal conductivity, 
inlet values 

g, 8r = gravitational acceleration, reduced 
gravitational acceleration, gr = gAp/p 

h, H = inlet diffuser opening height, total 
water depth 

Lx, Ly = characteristic lengths, Lx = Ly = 
(Q2/gr)U3 

p, q = pressure, inlet volume flow rate per 
unit width 

SUMLT, SUMRT = integral approximation at left and 
right sides of node 

t, tc = nondimensional time, t = t'/tc, char
acteristic time tc = Lx/U 

T', T = dimensional and nondimensional tem
perature, T = (Ts - T')/(TS - T.) 

Tx, Ty, T„ T^, Tyy = partial derivative with respect to x, y, 
and r, second partial derivatives 

Th Ts = dimensional inlet and (initial) stag
nant tank temperature 

TOLD, TNEW = temperature at time t, and at time t 
+ At 

u', u = dimensional and nondimensional hor
izontal velocities, u = u'/U 

ux, uy, u„ u^, Uyy = partial derivative with respect to x, y, 
and t, second partial derivatives 

U, V = horizontal and vertical characteristic 
velocities, U = V = {qgr)

ln 

UINLT = non-dimensional inlet velocity at x = 
0 (uniform in middle, rounded at cor
ners) 

UOLD, UNEW = horizontal velocity at time t, and / + 
At 
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behind the head were assumed to be negligible (and confirmed 
by numerical experiments). 

In the I-B regime, the characteristic ^-length and horizontal 
velocity are defined as follows (Nakos, 1987): 

U=(grLy)
l/2 = (qgr)

i/3. (1) 

The expression for Ly is an estimate of the current thickness 
obtained by Didden and Maxworthy, 1982, by equating the 
overall buoyancy and inertia forces. The value of U came from 
a similar force balance in which the overall buoyancy and 
inertia forces were equated. Because there is no obvious x-
length scale in the inertia-buoyancy regime, Lx was set equal 
to Lr Also, to simplify the continuity equation, V was set 
equal to U. The nondimensional I-B regime equations are the 
following: 

continuity: 
ux + vy = 0 

.^-momentum: 

U,+ UUX+VUy= - — I Apd)> + — Uyy 

and energy: 

Tt + UTx+VTy-VxRJyy 

(2) 

(3) 

(4) 

If one assumes the vertical velocity is an order of magnitude 
smaller than the horizontal velocity, an order of magnitude 
analysis performed on the .y-momentum equation shows all 
terms except the pressure gradient and the buoyancy force 
(body force) are negligible and the hydrostatic pressure vari
ation results. The integral term in Eq. (3) is the result of 
integrating the hydrostatic pressure variation with respect to 
y and then taking the derivative of that term with respect to 
x. The pressure gradient with respect to x is then obtained, is 
non-dimensionalized and then substituted into the x-momen-
tum equation. 

Inertia-Buoyancy Regime: Perturbation Formulation. The 
viscous term in the x-momentum Eq. (3) is multiplied by (1/ 
Re) which is of order 10"2 in the flows considered here. As a 
result, the viscous term in the x-momentum equation is small 
as compared with the inertia and buoyancy terms, hence the 
name "inertia-buoyancy" regime. However, total neglect of 
the viscous term in the momentum equation would result in a 
reduction of the order of the equation. As a result of that 

reduction of order, only one boundary condition in the y-
direction could be satisfied. This is called a "singularity" and 
may be dealt with by performing a singular perturbation anal
ysis. Such an analysis was performed as an alternative solution, 
and is presented next. The perturbation formulation allows 
one to better grasp the "physics" of the I-B regime, provides 
an alternate method by which an analysis of a gravity current 
can be made, and may also have applications elsewhere, for 
example wall jets. 

A physical model was first developed to better understand 
the "physics" of the perturbation analysis. Figure 2 shows 
how the flow in the I-B regime may be separated into three 
parts: the "core," "floor," and "interface" regions. The core 
and floor regions constitute the main body in Fig. 1, while the 
interface region is equivalent to the mixed region. The core 
region is in the middle of the flow and is governed by inertia 
and buoyancy forces. The floor region is located near the floor 
and is similar to a boundary layer in that viscous forces are 
present, in addition to the buoyancy and inertia forces. The 
interface region is also controlled by viscous, inertia and buoy
ancy forces, but the buoyancy forces are smaller than in the 
core and floor regions. 

In the singular perturbation analysis, scalings are used to 
transform the momentum and energy equations in the floor 
and interface regions. Those scalings eliminate multiplication 
by the parameter 1/Re in the viscous and conduction terms. 
Three sets of equations are generated, one set for each of the 
three regions, therefore, nine equations have to be solved. The 
resulting solutions for each region are combined to form a 
single solution called a "composite expansion" which is valid 
over the entire I-B regime (see Van Dyke, 1975). The core 
region solution is referred to as the "outer" solution and the 
floor and interface solutions are referred to as the "inner" 
solutions. Only the "zeroth" (lowest) order perturbation equa
tions and solutions will be presented here, as a result, the 
solution is only accurate to about O(10_1). In view of the 
assumptions and approximations made in the analysis (i.e., 
small vertical velocity, turbulence neglected), adding more 
terms into the solution was not appropriate for the application 
being considered. 

Scalings were found to be necessary only in the vertical 
coordinate and vertical velocity in the floor and interface re
gions (see Nakos, 1987). The scaled variables are: 

^ ^ - ^ V,^ (5) Xf-el/2> Vf-^U2> 

where e = 1/Re. Here the subscript "/" refers to the "inter
face" region, not the "inlet." Note that this scaling is the same 

Nomenclature (cont.) 

v', v = dimensional and nondimensional ver
tical velocity, v = v'/U 

vx, Vy = partial derivative with respect to x 
and y 

VOLD, VNEW = vertical velocity at time t, and t + At 
x, y = nondimensional horizontal and verti

cal coordinates, x = x'/Ly, y = y'/ 
Ly 

Ax, Ay, At = increments of space and time 
Vj = kinematic viscosity, inlet value 

As, pi = stagnant water density and inlet water 
density 

Ap' = dimensional density difference, = (p' 
- Ps) 

Ap = nondimensional density difference, = 
0 ' - PsV(Pi - Ps) 

e = 1/Re = singular perturbation scaling 
parameter 

Fr = inlet Froude number, = q/(grh
3)ul 

Pr = inlet Prandtl number, = p,-/a,-
Re = inlet Reynolds number, = q/vj 

Subscripts 
/, 5 = inlet value and value in stagnant 

water far in front of head 
x, y, t = horizontal and vertical length dimen

sions and time 
B, T = "bottom" and "top" of node in up

wind differencing, see Roache (1982) 
LT, RT = "left" and "right" sides of node in 

upwind differencing (different from L 
and R) 

L, R = "left and "right" sides of node in 
upwind differencing (different from 
LT and RT) 

c, f, i = core, floor, and interface regions in 
perturbation formulation 
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- T o * Floor 

Fig. 2 Perturbation solution schematic 

as the one for viscous flow over a flat plate (a boundary layer, 
see Van Dyke, 1975). With these scalings, the zeroth-order 
core and floor region equations become the following (the 
superscript 0 refers to the "zeroth-order" solution): 

Core region: 

continuity: 

dx dy 
(6) 

x-momentum: 

ndur 
—— + uc—~ + Vc-dt dx 

d_ 

dx 
) &P°cdy, (7) 

and energy: 

Floor region: 

continuity: 

61c ndJc nOJe 

dt 
-+Ur 

dx dy 

di$ dV} 
dx + dY/ 

= 0, 

(8) 

(9) 

x-momentum 

di^ 

dt 

and energy: 

+u'-di+^i¥r-d-x[
Ap°dy+jYi' (10) 

dlj 0dTJ 
- d l + Uflx~+VfdYf 

Vr 
dfj- 1 d2TJ 

Pr dY}' (H) 

Equations in the interface region are almost exactly the same 
as those in the floor region (they differ only by signs in the 
terms that contain dY,- because dY, = -dy), and so are not 
reproduced here. 

To obtain a solution valid over the entire flow, a composite 
solution is required. To accomplish that, the method of ad
ditive composition was used (see Van Dyke, 1975). The com
posite is determined in three steps: first form an intermediate 
composite between the core and floor regions, second form a 
similar intermediate composite between the core and interface 
regions, and finally form a single composite from the two 
intermediate composites. Using temperature as an example, 
form the first intermediate composite as follows: 

Core-floor composite: 

Tc/=Tc+Tf-(Tc)f, (12) 

where the term (Tc)f is called the "inner expansion of the outer 
solution." In actuality, this term is the "common part" (CP), 
or that part common to both the core and floor region solu

tions. It is subtracted out of the intermediate composite so 
that it is not counted twice. Similarly, the other intermediate 
composite is the following: 

Core-interface composite: 

Tci=Tc+Ti-(Tc)h (13) 

where (Tc)i is similar to {Tc)f. Finally, the overall composite is 
formed in the same manner with the common part to be de
termined: (CP = common part) 

T=Tcf+Tci-C?-- Tc+Tf-(Tc)f 

+ TC+T<- (TC),-CP. (14) 

(15) 

T, u, and v. 

By inspection, it can be seen that the part common to both 
intermediate solutions is Tc, therefore CP = Tc. As a result, 
the final composite expansion is the following: 

T=Tc+Tf+T,-(Tc)f-(Te),. 

Equation (15) was used for all three variables: 
Results are shown in the figures. 

It was not possible to extend all three solutions (core, floor 
and interface) over the entire height of the tank due to dif
ferences in the boundary conditions at x = 0. The floor and 
core solutions extend from the floor to the top of the inlet (0 
< y and Yj < 1), while the interface solution extends over 
the entire height (0 < Y{ < H). As a result, when the composite 
expansion was formed, the part of the solution from the floor 
to the top of the inlet (0 < y < 1) consisted of parts from all 
three regions, whereas the solution above the top of the inlet 
consisted only of the interface region solution. 

Boundary and Initial Conditions. The boundary and initial 
conditions used for the numerical formulation were: 

/ = 0: u = v=T=0, 

t>0; x=0,H>y>h: w = 0, dT/dx=0 

x = 0, 0<y<h: « = UINLT, T=uniform, 

x=oo, all j ^ : 

j> = 0: w = y = 0, dT/dy = 0, 

y = H: M = 0, dT/dy = 0. (16) 

UINLT is the nondimensional inlet velocity boundary con
dition and was approximated by a profile flat in the middle 
and rounded at the corners. This shape was generated from 
physical considerations (Nakos, 1987 and Nakos and Wildin, 
1988). The inlet diffuser in the experimental apparatus was not 
long enough to generate a parabolic profile, so the slightly 
rounded profile was used as a compromise. 

The non-dimensional inlet temperature boundary condition 
was assumed to be uniform. The non-dimensional temperature 
was defined as (Ts - T')/(TS - Ti), where Ts was the initial 

86/Vol. 116, MARCH 1994 Transactions of the AS ME 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



stagnant water temperature and T} was the temperature in the 
inlet piping upstream of the diffuser. Because some of the 
warmer water was in the inlet diffuser and there was some heat 
gain in the piping between where T, was measured and the 
diffuser, the temperature T' at the inlet never reached the 
coldest possible value (7}). As a result, the nondimertsional 
temperature T never reached the maximum (1.00), but only 
about 0.86, which coincidentally was the same (inlet boundary 
condition) for all experiments. 

The condition at x = °° states that there was no motion in 
front of the gravity current. The conditions at v = H were 
not actually used. Since no motion was detected above about 
4 cm from the floor, a numerical upper limit was set at 4 cm 
rather than at the actual free surface at about 30 cm from the 
floor. This saved considerable computer time. The conditions 
used at the numerical upper limit were the same as those at y 
= / /s tated in Eq. (16). 

Boundary conditions in the three regions of the perturbation 
formulation are shown below. The zeroth-order superscripts 
are dropped for convenience. 

For the core region, 0 < v < h: 

t = 0: uc=vc=Tc = 0, 

/ > 0 ; x = 0, ally: uc = uniform, Tc = uniform, 

y = 0: vc = 0,dTc/dy = 0, 

y = h: duc/dy = 0. (17) 

For the floor region, 0 < Y/ < h: 

t = 0: uf=vf=Tf=Q 

t>Q\ x=Q, all Yf. «/=uniform, 7/=uniform, 

J>= 0, all x: uf= vf= 0, dTf/dYf= 0, 

17=00, all*: Uf(x, 00, t) = uc(x, 0, t), 

Tf(x, oo,t) = Tc(x,0,t). 

Vf(x,<X,t)=eln(vc(x,0,t)).(\8) 

For the interface region, 0 < Y, < H: 

t = 0: uc=vc=Tc = Q, 

t>0; x=0,0<Yj<h: «, = uniform, T) = uniform, 

x = 0, h< Yi<H: ui = 0, dT/dx=0, 

Yi = 0, all x: Uj=Tj = 0, 

Y/= 00, all*: Uj(x, 00, t)=uc(x, h,t), 

T,(x, oo,t) = Tc(x,h,t), 

Vi(x,cc,t)=ew2(vc(x,h,t)). 
(19) 

The inlet velocity profiles in all three regions were "uni
form," different than in the numerical formulation. This was 
required so that all three inlet flow rates were the same and 
that correct matching between regions could be accomplished. 
Note also that a pressure boundary condition is absent. This 
due to the fact that, to zeroth order, the pressure is the same 
between all three regions. 

Numerical Analysis. Explicit finite difference methods were 
used to solve all of the equations. A forward difference op
erator was used to approximate the time derivatives. Centered 
space differencing was used in the second order derivatives. 
First upwind differencing was used in the nonlinear advection 
terms in the momentum and energy equations (Roache, 1982). 
A centered difference operator was used in the pressure gra
dient term. A backward difference was used in both terms in 
the continuity equation. The above differencing methods were 
used throughout the flows except in the core region in the 
perturbation formulation. In that case the only differences 
were that a second upwind difference scheme was used for the 

advection terms and a centered difference was used for du/ 
dx. 

Overall energy balances were calculated as a comparison 
between the energy input into the tank and the amount of 
energy actually in the tank. The differences were less than one 
percent in the numerical formulation. In the perturbation for
mulation the balances were not good because of poor com
posite expansions near the very front of the current. 

The momentum equation has to be solved to obtain "u" 
before the continuity equation can be solved to obtain "v" . 
This is because new values of horizontal velocity u are used 
with old boundary values of vertical velocity to calculate new 
values of vertical velocity. Typical finite difference equations 
from the numerical formulation are shown below. The energy 
equation is: 

TNEW(i, j) = TOLD(/, J) - (At/Ax) (uRTRT- uLTLT) 

- (At/Ay) (vTTT- vBTB) + (Af/A//RePr)(TOLD(/, j+l) 

+ TOLD(i, y - 1)-2*TOLD0' , j)). (20) 

The momentum equation is: 

UNEW(/, j) = UOLD((, j) - (At/Ax) (uRuRT- uLuLT) 

- (At/Ay) (VTUT- VBUB) - (A/Av/Ax)(SUMRT- SUMLT) 

+ (A//A//Re)(UOLD(/, j+ 1) + UOLD(i, j - 1) 

-2*UOLD(/ ,y)) . (21) 

where SUMRT and SUMLT are difference representations of 
the integral term in the momentum equation, (3). The conti
nuity equation is: 

VNEW(/, j) = VNEW(Z, j - 1) - (A_y/Ax)(UNEW(/, j) 
- U N E W ( i - l , y ) . (22) 

The time-stepping procedure used was as follows: the "old" 
values were updated by substituting the "new" values after 
the new values were calculated in Eqs. (20)-(22). A new time 
increment was calculated at each step using the new values of 
velocity and temperature and a stability criterion. The time 
was then incremented and the process repeated. 

Several values of Ax and Ay were used to check for con
vergence in both the numerical and perturbation formulations. 
Maximum velocity, maximum temperature and floor temper
ature were checked for convergence. Because most of the terms 
in the difference approximations were first order accurate, 
convergence was first order. Due to this slow convergence, a 
large grid was finally used, namely, 161 x 121. The final values 
ofxand.y used were about 0.20 and 0.033, respectively. Using 
the final values, the maximum velocity and maximum tem
peratures had converged to less than about 5 percent of their 
estimated "exact" values. On the other hand, the floor tem
perature had converged to only about 25 percent of its final 
value. Because the computer runs were already very long, no 
further increases in grid size were made. 

Results and Discussion 

Experimental results were obtained from a plexiglass tank 
45 cm wide, 45 cm high and 240 cm long. The upper water 
level was about 30 cm high. The inlet diffuser spanned the 
•entire 45 cm width of the bottom of the tank and was held 
constant at 1 cm. Cold water was introduced through the 
diffuser and travelled the length of the floor. Figure 1 shows 
a sketch of the setup and gravity current. The inlet is shown, 
but the upstream diffuser is not. The initial tank water tem
perature averaged about 25-30°C and the inlet chilled water 
temperature about 5°C, resulting in a temperature difference 
of about 20-25°C. A stationary array of 17 thermocouples 
mounted vertically about every 0.25 cm measured the water 
temperature as the gravity current passed. Velocity measure-
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Dlmenaionless height, y'/Ly 

- Num data Exp data 

.2 .3 .4 .5 .6 .7 .8 
Dlmenslonle88 Temperature (Ts-T')/(Ta-TI) 

Fig. 3 Experimental-numerical temperature comparison, Re = 102, 
Fr = 0.99, Pr = 11.0, x = 10.1 f = 32.9, i.y = 0.99cm, Ts = 24.9C, r/ = 5.0C 

Dlmenslonless height, y'/Ly 

.2 .3 .4 .5 .6 .7 
Dlmenslonless Temperature, (Ts-T')/(Ts-TI) 

Fig. 4 Experimental-numerical temperature comparison, Re = 133, 
Fr = 1.03, Pr = 11.1,x = 9.8, f = 40.9, Ly=1.02cm, Ts = 29.1C, 77 = 4.7C 

ments were made at the same horizontal location, but the 
results were to inaccurate to present (see Yoo, 1986). As a 
result, only vertical profiles of temperature were obtained. Inlet 
Froude numbers for the tests were 0.99 and 1.03, inlet Reynolds 
numbers were 102 and 133 and inlet Prandtl numbers were 
11.0 and 11.1, respectively. The very low Reynolds numbers 
were due to the very low flow rates used. The experimental 
data were generated by Yoo (1986) and Nakos (1987). More 
details on the test apparatus can be found in Yoo (1986). 

Comparison of experimental data and predicted tempera
tures for the numerical formulation are shown in Figs. 3 and 
4 for two tests. These figures are generally representative of 
experimental data in the I-B regime. Large non-dimensional 
temperatures correspond to the coldest temperature, so that 
the warmest water was above the floor and the coldest was 
close to the bottom. The figures show plots of nondimensional 
temperature vs. nondimensional height above the floor at non-
dimensional time 32.9 (20.8 s) or 40.9 (20.7 s) after the initiation 
of the flow. These times were used for two reasons. First, the 
I-B regime lasted only about 24 seconds. After about 24 sec
onds, the flow transitioned to the V-B regime. Second, the 
flow was not well developed at earlier times. Measurements 
taken at t = 16.4 (12.4 seconds) were very erratic, indicating 
the flow had not yet recovered from the turbulence that resulted 
from the initial water put into the tank. 

Several characteristics are evident in the experimental results 
in Figs. 3 and 4. First, there is a region between heights of 
about 1.0 and 2.0 in which there is a large temperature gradient, 
i.e., the nondimensional temperature drops very fast. This high 
gradient region is a very desirable characteristic in thermocline 
formation. Second, there is a relatively flat region of temper

ature between the heights 0-1.0. The junction of the high 
gradient region and the flat portion occurs at about 1.0, cor
responding to the inlet diffuser height (1.0 cm) and the gravity 
current thickness. The gravity current "thickness" is equal to 
the diffuser opening height in the I-B regime, as shown in Yoo 
(1986). 

As can be seen, overall agreement between experimental and 
numerical data in the I-B regime is generally good. The dis
crepancies that occur between heights 1.0 to 2.0 are due to 
several factors. First, in the experiments, some up welling (tur
bulence) of cold fluid that occurred early in the flow settled 
downward due to its greater density. This was not modelled, 
and caused the measured temperature gradient to be less. Sec
ond, any other turbulence, mixing or entrainment were not 
accounted for in the model and tended to cause a less steep 
gradient region. A third possibility for the discrepancies could 
be due to flow perturbations caused by the thermocouple string. 

The discrepancies between heights 0-0.25 are believed to be 
caused by turbulence in the head and gravitational instabilities. 
The gravitational instabilities were caused by heat transfer 
from the floor warming fluid near the floor. This warming 
caused pockets of warmer, less dense water to be present at 
the floor under colder, more dense fluid. This situation was 
unstable and caused the colder water to drop and the warmer 
water to rise, which resulted in replenishment of colder water 
near the floor. As a result, the water just above the floor was 
colder (higher nondimensional temperature) than that pre
dicted by the purely laminar model. Gravitational instabilities 
were also described by Chobotov et al. (1986), and Simpson 
and Britter (1979). 

An adiabatic boundary condition was used in the predic
tions, as can be seen in the figures at the floor (dT/dy = 0). 
This was not an accurate assumption because there was always 
some heat conduction from the floor into the water. However, 
making quantitative assumptions about the heat transfer could 
not be easily justified, and so as a compromise the adiabatic 
condition was used. 

Figures 5 and 6 show predictions of horizontal velocity from 
the numerical and perturbation formulations for increasing 
times at x = 5. Qualitative agreement between the predicted 
results of the two solution techniques is good. However, as 
can be seen, the maximum velocities in the perturbation so
lution are less than those in the numerical formulation for all 
times. One would expect that the velocities from the pertur
bation results would be less because only the zeroth order part 
of the solution is presented. However, the amounts of the 
differences range from 16 to 21 percent, more than might be 
expected. One would expect that the perturbation solution 
would be on the order of e1/2, about 10 percent less than the 
numerical solution. 

The maxima of all of the profiles occur between heights 0.5 
and 1.0. The vertical location of the maximum rose with time, 
due to shear at the floor. The maxima are smaller with time 
due to the increasing viscous force as the current length in
creases. 

Although it is difficult to see from Figs. 5 and 6, matching 
of the parts of the perturbation solution at height 1.0 occurs 
smoothly. As discussed earlier, the solution below y = 1 con
sists of parts from all three regions (core, floor and interface), 
but the solution above y = 1 is only from the interface region. 
Matching conditions require that there be continuity of velocity 
but not necessarily of slope or gradient. The profile at t = 
12.6 shows very good continuity of slope, but the one at / = 
32.9 shows a slight discontinuity at height 1.0, although it is 
difficult to see from Fig. 6. Because the I-B regime lasts only 
/ = 34.8 (24 s) for this case, one might expect that the per
turbation solution would begin to break down (i.e., slope dis
continuity) at t = 32.9, and that is the case. 

Figure 7 shows predicted temperature from the two for
mulations at t = 32.9 and x = 5. Because the perturbation 
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Fig. 6 Horizontal velocity for increasing time numerical and pertur- F j g 8 Horizontal velocity at distances from inlet, perturbation predic-
bation predictions, x=5 , Re = 102, Fr = 0.99, Pr=11.0, ty=0.99 cm, tioris, Re = 102, Fr = 0.99, Pr = 11.0, f = 32.9, Ly= 0.99 cm, U= 1.56 cm/s 
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velocities are less than those in the numerical solution in Fig. 
6, the temperature lags behind as well. The region of highest 
discrepancy is from about heights 1-2, where the gradient is 
largest. 

Figure 8 shows a plot of predicted velocity profiles from the 
perturbation formulation at / = 32.9, at increasing distances 
from the inlet. In Fig. 2 it was postulated that the core region 
shrinks in size with distance from the inlet as the interface and 
floor regions grow. This behavior can be seen in Fig. 8 where 
the profiles become more pointed with increasing distance from 
the inlet, indicating a thinning core region. One might expect 
that the velocity profile at x = 1 would be flatter, because the 
inlet profile was uniform and x = 1 is close to the inlet. A 
comparison was made (not shown) between the numerical and 
perturbation formulations at x = 1 and t = 32.9. The results 
show the profiles to be almost the same, indicating the profiles 
develop very fast, and giving some confirmation to the per
turbation results. 

Direct comparison of the predicted results here with exper
imental data from Chobotov et al. (1986) is not possible. These 
data are strictly for the I-B regime, assuming an adiabatic 
condition at the floor. Chobotov's data is for heat transferring 
flow, which he shows is constantly decelerating. Nevertheless, 
qualitatively, the shape of the profiles in Chobotov et al. (1986), 
are very similar to the temperature profiles presented here. 
See, for example, Fig. 3.14 in Chobotov et al. (1986). 

A useful comparison can be made between the classical, 
inviscid result in an infinitely deep fluid and the results pre

sented here. In the classical result, the speed of the current is 
given by the following result (see Benjamin, 1968): 

u'=(2hg[Ap/p])1/2=(2hgr)
w2 (23) 

The maximum nondimensional speed in Fig. 5 at t = 12.6, 
which has the lowest viscous effect of the curves shown, is 
about u = 1.05. As time progresses, viscous effects become 
more pronounced and the speed drops, u = 1.05 translates 
into a dimensional velocity of u' = l.05(Lygr)

l/2 « 1.05 
(hgr)

l/2, which is less than the inviscid solution of u' = 1.41 
(hgr)u2. The inviscid result predicts a speed about (2)1/2/1.05 
= 1.35 times faster than the results presented here. This higher 
speed would be expected, because the results from this work 
include viscous terms. 

Conclusions 
1) The analysis shows that a gravity current can, at least 

qualitatively, be modelled using two formulations in the I-B 
regime, numerical and perturbation. 

2) The current behind the head can be modelled in two or 
three regions. In the numerical formulation the two regions 
are the main body and the mixed region above the main body. 
In the perturbation formulation they are the floor, core and 
interface regions. 

3) Comparisons of experimental and predicted temperature 
data are good for the numerical formulation. Comparison 
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Interpreting Vortex Interactions 
With a Free Surface 
An understanding of the process by which vorticity interacts with a free surface is 
sought by analytical examination of the free-surf ace condition for the vorticity flux. 
A novel mechanism is suggested that permits closed vortex loops to evolve into open 
loops terminating at the free surface. It is hypothesized that abrupt vortex "dis
connection, " observed in physical experiments, arises from a smooth diffusion of 
vorticity through the interface, with a necessary coincident tangential acceleration 
of the interface attributed to viscous forces. 

Introduction 
The unsteady flowing water in streams and rivers, the water 

surface disturbances observed at discharges from hydroelectric 
plants, and the wakes of boats, are all characterized by vortex 
interactions with the free surface. A feature common to all of 
these flows is the presence of swirls or eddies. These surface 
eddies are manifestations of vorticity aligned normal to the 
free surface and organized to form coherent vortices with end 
points at the free surface. In many cases these two-dimensional 
features are produced by complex three-dimensional vortical 
flow generated beneath the surface. 

The approach of a continuous vortex element, such as a 
ring, to the free surface presents an interesting situation, be
cause the vortex element is sometimes observed to become 
discontinuous (within the fluid through which it is moving), 
with the vortex lines attached nearly normal to the free surface. 
This dramatic reconfiguration of the vorticity is kinematically 
permissible although not required. Whereas vortices cannot 
end on a no-slip surface such as a stationary rigid wall, they 
are permitted to terminate on a full-slip boundary such as a 
free surface. The question is what dynamic mechanisms are 
associated with this abrupt transformation in which there is 
disappearance of surface-parallel vorticity and coincident ap
pearance of surface-normal vorticity. 

Examples of the recent research with wakes are reported by 
Hirsa et al. (1991) and Sarpkaya (1992). Research with jets 
and vortex rings is reported by Bernal and Kwon (1989), An
thony, Hirsa, and Willmarth (1991), and Kachman et al. (1991). 
These recent efforts consistently report observations of the 
normal attachment of vorticity which was previously not at
tached to the free surface. All of the accounts of the process 
for attachment are equally ambiguous, usually requiring con
ceptual notions of image vortices to invoke attachment, yet 
using such terms as "broken" vortices to describe the process. 

The concept of a free surface results in a boundary condition 
on the fluid in which the external tangential stresses are neg
ligible and the normal stress is approximately a constant. In 
other words, the boundary is specified by a constant pressure 
condition. Such a free surface is observed in practice at the 
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surfaces of rivers and oceans. Under such conditions, the vor
tex interaction with the boundary, the free surface, depends 
only on the dynamics in that boundary and not, for example, 
on the dynamics of a fluid on the other side of the boundary. 
Furthermore, explanations of the vortex interactions must in 
general allow for the deformation of the free surface during 
the interaction. For both of these reasons, vortex image meth
ods which require flow symmetry about the interface are gen
erally not appropriate although they may produce some of the 
interaction features. Since these methods are not based on 
physics of the actual flow, they result in erroneous require
ments such as existence of a vortex in the air to solve the 
interface problem. An explanation is needed, based on rational 
mathematical models, first to describe why the phenomenon 
of vortex attachment exists and second to provide a basis for 
scientific investigation of flows that include the process of 
vortex attachment. 

The purpose of this paper is to propose a rigorous expla
nation for the vortex attachment process. The explanation is 
based on the fact, shown here, that vorticity coincidentally 
fluxes into the boundary of a fluid when the boundary ex
periences an acceleration in the plane of the boundary. There 
is no need to invoke models of vortex reconnection, or models 
of vortex images, to explain vortex attachment. In fact, there 
is no requirement concerning the existence of a fluid on the 
other side of the free surface. Vorticity can flux into the free 
surface and simply disappear from the flow field with a coin
cident acceleration of the flow in the plane of the free surface, 
a fact that has apparently been overlooked by researchers in 
this field. 

The focus here is on the incompressible interaction between 
vorticity in water and an air-water interface that is a free 
surface; the viscosity and density of the air are sufficiently 
small, leading to the zero-tangential stress and constant normal 
stress conditions on the water at the interface. Although a 
general approach is mathematically intractable, the essential 
physics of the interaction can be elucidated by performing a 
local analysis. Lugt (1987) investigated the two-dimensional 
interaction for steady flow. The focus of his investigation was 
on the steady flux of vorticity at a curved surface of fixed 
shape. Here his approach is adapted in a more general for
mulation that includes the unsteady case where the evolving 
vorticity field interacts with the free surface. 
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The Vorticity Flux Equation 

A general formulation of the vorticity flux equation (Rood, 
1993) for a surface with unit normal n is based on the vector 
identity: 

nxVx« = (V«) -n-n-Vu (1) 
The two terms on the right-hand side of Eq. (1) are direct 

products of the normal vector and the gradient vorticity tensor. 
It is important that the order of the tensor contractions be 
maintained, and that the effects of spatial gradients of the unit 
vectors for curvilinear coordinate systems be included. For 
cases where the curvature of the free surface is important, the 
curvilinear expression for the gradient vorticity tensor includes 
cross-terms among the vorticity components. 

Under certain conditions these terms can be neglected. These 
conditions are embodied in two cases. In the first case the 
criterion is the restriction that free surface be planar, and in 
the second case the criterion is the less restrictive requirement 
that the surface-parallel vorticity lines be straight (the free 
surface may be curved in the direction perpendicular to the 
vorticity lines). 

The first case is exemplified by a flow described in a rec
tangular coordinate system in which one of the coordinates is 
normal to the free surface. In this case the first term on the 
right-hand side of Eq. (1) is simply the gradient of the surface-
normal component of vorticity. It is observed by inspection 
that a surface-parallel gradient of the surface-normal vorticity 
contributes to the surface-normal flux of surface-parallel vor
ticity. If there is no surface-normal vorticity, the value of this 
term is zero. In cases where the free surface is only slightly 
deformed and the local radius of curvature is very large, the 
exact curvilinear coordinate system (with coordinate surface 
coexisting with the free surface) is approximated by a rectan
gular coordinate system. This is the case for two-dimensional 
flow in an open channel (with a no-slip bottom and a free 
surface at the top) in which it is assumed that there is no surface-
normal vorticity at the free surface prior to the interaction of 
the bottom-generated vorticity with the free-surface. 

The second case is exemplified by a flow naturally described 
in a cylindrical coordinate system (the cylindrical coordinate 
surface approximating the free surface). If the surface parallel 
vorticity is tangential to a curve with very large radius of 
curvature (the axial coordinate, in fact) then this term ap
proaches zero as shown in Rood (1993) using expansions of 
generalized coordinates described in Batchelor (1967). This is 
the case for the interaction of a vortex ring with the free surface, 
especially for the flow in the vertical symmetry plane. In this 
case, there is no pre-existing surface-normal vorticity at the 
free surface and the first term on the right hand side of Eq. 
(1) has the value of zero. 

An expression for the rate of change of vorticity at the free 
surface is obtained by integrating Eq. (1) over the free surface 
to produce the equation: 

v \ n-Voids = v \ Vu-Ms-v 1 ( nxvxw)c fe (2) 

which is combined with the equation for the momentum: 

flu Vp , 
— + U- V u + - g = -p(VXco) 
at p 

(3) 

to produce the equation 

v \ ft-Vwcfs=i' \ Va-Vkds 
J / . -s . J / - s . 

+ ( nx 
flu Vp 
— + U-VU + — ^ - g 
Of p 

- g ds (4) 

relating the flux of vorticity at the free surface to the tangential 
component of the acceleration of the flow in the free surface. 

FREE-SURFACE 

Fig. 1 Circular arc approximation for the free surface 

The tangential component of acceleration in the free surface 
is nonzero if there is a viscous imbalance in the forces acting 
tangentially on the fluid in the interface. If there are no viscous 
forces, that term is zero. The present concern is with inter
actions of tangential components of vorticity exemplified by 
closed vortex loops interacting with the free surface. Therefore 
the first term on the right can be neglected. In the second term, 
the component of the pressure gradient tangential to the free 
surface is zero and does not contribute to the integral. Under 
these conditions the equation describing the flux of tangential 
vorticity at the free surface is written: 

flu 
• + u- V u - g vn- Vco = n x flf 

(5) 

where the term in brackets is the viscous acceleration expressed 
as the difference between the local and advective accelerations 
and the gravitational acceleration. 

Application of the Equation 
Equation (5) can be evaluated in a local analysis to investigate 

the vorticity flux. Consider a polar coordinate system with a 
circular arc approximation for the free surface in the vicinity 
of the point at which the vorticity flux is being investigated, 
shown in Fig. 1. In order to permit elucidation of the features 
of vorticity flux, assume that the free surface maintains its 
shape during the interaction. For this flow, the following equa
tion describes the flux of surface-parallel vorticity through the 
free surface: 

dr 
/floA dUg Ue dUg 

V\T\ =^r r + 7 ; ^ r + gcos(0-0o) flf R 38 
(6) 

Equation (6) relates the flux of the surface-parallel, or tan
gential, component of vorticity at the free surface to the sum 
of the tangential accelerations of the fluid in the free surface. 
The physical significance of the equation is that, for viscous 
fluids, there is a flux of vorticity into the free surface coincident 
with the acceleration of the boundary. That flux results in a 
net change in the quantity of vorticity in the fluid as well as 
a mechanism for vortex filaments to attach to the free surface. 

The sign for the flux depends, of course, on the positive 
direction chosen for the normal vector. Convection dictated 
by the application of the divergence theorem to a volume of 
fluid specifies that the unit normal is the outward normal. In 
this case a negative value for the flux implies a net outward 
flow of positive vorticity and a coincident deceleration of the 
flow in the free surface. 

Discussion 

There is an essential distinction between the physics of the 
flow for a solid boundary and the physics of the flow for a 
free surface that permits interpretation of vortex attachment 
to the free surface. For a fixed rigid body boundary, the flux 
of vorticity is proportional to the pressure gradient on the no-
slip surface. On the other hand, the flux of vorticity for a full 
slip free surface is proportional to the accelerations of the fluid 
in the interface. Note, however, that this is carefully drawn 
distinction. In both cases the flux is produced by viscous forces. 
The relationship between vorticity flux and surface-parallel 
acceleration is made apparent in the following problem. 
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Consider the two-dimensional flow between two horizontal 
parallel plates, initially at rest but with the lower plate suddenly 
imparted a constant velocity. The vorticity generated at the 
instant of acceleration of the moving plate diffuses into the 
flow interior and the flow approaches a state of constant vor
ticity (a linear distribution of velocity between the plates). Now 
consider the response if the experiment is repeated with the 
nonmoving upper plate replaced with a free surface. The flow 
again approaches a state of constant vorticity but the value is 
zero because the entire flow has the velocity of the lower plate. 
According to the above analysis, the vorticity produced by the 
accelerated plate diffuses through the flow and fluxes into the 
free surface with a coincidental change in the tangential com
ponent of velocity. The interaction is completely contained in 
the time derivative of the velocity, since the advective and 
gravitational accelerations are exactly zero. In this example 
vorticity has "disappeared" from the flow, but no conser
vation principle has been violated because mass and momen
tum are conserved. 

This disappearance of the vorticity is unsettling only if vor
ticity is assumed to have attributes that are conserved in the 
manner that linear momentum is conserved. The linear mo
mentum equation is a statement of the balance between force 
and rate of change of momentum (Newton's second law), 
which when coupled with the statement of action and reaction 
(Newton's third law) completes the requirement for conser
vation of momentum (Goldstein, 1950). Vorticity is a kinematic 
variable governed by an evolution field equation similar to the 
equation for the evolution of momentum (Morton, 1984). 
However, there is no equivalent "action-reaction" statement 
to govern the overall conservation of vorticity. Furthermore, 
vorticity is not related to the local angular velocity except as 
a geometrical feature (Tritton, 1982), and hence is not fun
damentally related to angular momentum. The conclusion is 
that the disappearance of vorticity is physically permissible. It 
is noted, however, that in practice the free surface separates 
two fluids such that the vorticity flux out of one fluid is a flux 
into the other fluid. 

The usefulness of this explanation for vortex interactions 
with a free surface is evident in the case of a vortex ring 
approaching the free surface along an inclined path. It is ob
served experimentally (Bernal and Kwon, 1989) that the upper 
arc of the ring "breaks" to form a loop with its ends termi
nating at the free surface. As the vortex loop approaches the 
free surface, the core is deformed against the free surface 
leading to large vorticity diffusion. As stated above, the value 
of the vorticity at the free surface is determined by the curvature 
of the free surface and the tangential component of the velocity 
in the free surface. For low Froude numbers, the surface is 
almost flat with an imposed condition of a negligible value for 
the vorticity. The vorticity in the vortex loop rapidly diffuses 
to the free surface, where it fluxes out of the field with a 
coincident tangential acceleration (actually a deceleration) of 
the fluid in the free surface. In this case both the temporal 
and the spatial accelerations are important to the vorticity flux. 
During this process the surface-parallel vorticity at the free 
surface disappears with a coincident attachment of the vortex 
lines to the free surface. Quite simply, a portion of the closed 
vortex loop fluxes out of the fluid, leaving the remainder of 
the loop with ends terminating at the free surface. The ter
minated ends are made manifest by the appearance of eddies, 
or surface-normal vorticity, at the free surface. For a deformed 
free surface the results are modified by the specification of a 
nonzero value for the tangential component of the vorticity at 
the free surface, but otherwise the concept is identical. 

Note that the deceleration of the fluid as the vorticity fluxes 
into the free surface counters the acceleration of the fluid that 
was produced by the inviscid interaction of the vortex with the 
free surface. In that inviscid interaction, which occurs before 
the vorticity contacts the free surface, the approximate model 

of a vortex image correctly indicates that the fluid is accel
erated. 

There are other dynamic processes that produce changes in 
the vorticity configuration during the interactions of a vortex 
ring with the free surface. Based on detailed velocity and vor
ticity field measurements, Gharib et al. (1992) have recently 
demonstrated the disappearance of the surface-parallel vor
ticity in the plane of symmetry. Their detailed analysis of the 
data concludes that neither cancellation by counter-sign vor
ticity nor convection by the flow are mechanisms for the dis
appearance of the surface-parallel vorticity. 

The analysis here is also found useful upon re-examination 
of well-referenced results in the literature. The famous exper
iments of Barker and Crow (1977) showed apparent rebound 
of the vortices from the free surface similar to what is observed 
when vortices interact with a rigid no-slip boundary where 
secondary boundary layer vorticity induces the primary vor
ticity away from the wall. A subsequent numerical experiment 
by Peace and Riley (1983) also showed a rebound of the vortex. 
In this numerical experiment the center of the diffusing vortex 
was defined to be the location of maximum vorticity. A new 
explanation for the rebound is found using the description here 
of a process by which vorticity fluxes into the free surface. As 
the primary vortex approaches the free surface and deforms, 
the vorticity diffuses to the free surface, where it fluxes out 
of the field. Saffman (1991) analytically shows for these ex
periments that the location of the centroid of maximum vor
ticity moves away from the free surface during the interaction. 
He states that the centroid is not a Lagrangian quantity and 
hence fluid particles associated with the vortex move toward 
the free surface and the vortex only seems to rebound. Here 
it is shown how the vorticity leaves the field. 

An interesting consequence arises relevant to experiments in 
which dye is used to mark the fluid and, by inference, the 
vorticity near the free surface. It is expected that most of the 
vorticity will eventually diffuse through the free surface, which 
must be maintained at zero vorticity if it is flat and shear-free. 
In this case the resulting flow would be irrotational and would 
have acquired a velocity in the interface consistent with the 
flux of vorticity through the interface. However, the dye must 
diffuse according to a different dispersion relation and may 
not flux into the free surface. Hence the dye may erroneously 
be perceived as marking vorticity that is not there. 
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The Initialization of Vortical 
Free-Surface Flows 
Numerical simulations of vortical free-surface flows are prone to developing spurious 
high-frequency dispersive waves unless the flow field is given sufficient time to 
adjust. At low Froude numbers, the high-frequency waves obscure the true hydro
static balance of the free-surface elevation with the component of the pressure that 
is induced by the vortical portion of the flow. The high-frequency waves must be 
eliminated for remote sensing applications because otherwise the roughening of the 
free surface and the predicted radar backscatter will be incorrect. A procedure is 
developed for reducing the initial impulse of the pressure and the subsequent gen
eration of high-frequency waves. Numerical simulations of whirls illustrate the 
effectiveness of the procedure. The pressure field of the whirls forms dimples on 
the free surface. 

Introduction 
Remote sensing simulations of the ocean surface currently 

use a wave-action equation to model the effects of turbulence, 
wind, surfactants, and nonlinear wave interactions (Hughes, 
1978). The difficulties that are associated with parameterizing 
all of these physical effects are substantially reduced by per
forming direct numerical simulations of turbulent free-surface 
flows. However, as will be shown, the improper initialization 
of vortical or turbulent free-surface flows will generate high-
frequency waves that will adversely affect estimates of the radar 
backscatter from the ocean surface. 

The concept of initialization is very familiar to meteorolo
gists, but almost foreign to the naval hydrodynamic com
munity. Meteorologists use initialization procedures to 
eliminate spurious high-frequency gravity-inertia waves from 
numerical weather predictions. This process produces a bal
anced model of the atmosphere that is dominated by the low-
frequency Rossby modes that are important at planetary length 
and time scales. Two examples of procedures to initialize 
weather simulations include the methods of Machenhauer 
(1977) and Bauer and Tribbia (1977) who separate the gov
erning equations into the slow and fast modes, and then they 
formulate initial conditions that do not excite the high-fre
quency gravity-inertia waves. 

The generation of high-frequency waves in numerical sim
ulations of vortical and turbulent free-surface flows is similar 
to the problems that occur in numerical weather prediction. 
As an analogy, consider the impulsive wave motion that is 
imparted by a stone hitting the water surface. In this Cauchy-
Poisson problem, the high-frequency dispersive waves that 
radiate away from the impact zone correspond to the unde
sirable inertia-gravity waves that are present in unbalanced 
numerical weather predictions. The localized nonpropagating 
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disturbance of the stone, which includes the water displaced 
by the stone, corresponds to the desirable Rossby modes. Our 
present objective is to model the slow entry of a stone or more 
specifically, the interaction of vortical structures with a free 
surface at low to moderate Froude numbers. Unlike the stone-
entry problem, submerged vortical structures do not suddenly 
appear in nature so numerical simulations require special treat
ment to ensure that undesirable dispersive waves are not gen
erated. 

Our analysis will show that the component of the pressure 
that is induced by the vortical portion of the flow will generate 
spurious high-frequency waves unless the free surface is given 
sufficient time to adjust, even if the initial free-surface ele
vation is zero. Our procedure is similar to the adjustment 
process that actually occurs in nature, whereby the high-fre
quency waves radiate away from a disturbance to leave behind 
the desirable low-frequency response. In nature the physical 
domain is large enough to permit the radiation of the high-
frequency waves, whereas in our numerical simulations we 
make the time scale of the disturbance so long that no high-
frequency waves are generated. 

An alternative numerical procedure, that is even more closely 
related to what actually occurs in nature, is to use open-bound
ary conditions. However, open-boundary conditions for time-
domain problems with nonlinear free-surface boundary con
ditions have transmission problems (Dommermuth and Yue, 
1987). Even if perfect transmission could be attained, it would 
still take at least one wave period for a disturbance at one end 
of the computational domain to cross to the opposite end where 
it could make an exit. This is the same amount of time that 
our adjustment procedure requires, and our adjustment pro
cedure does not incur any of the overhead costs that are as
sociated with computing open-boundary conditions. 

The original initialization procedures of Machenhauer (1977) 
and Bauer and Tribbia (1977) are difficult to apply to deep 
water problems because their schemes require changes to the 
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free-surface elevation that affect every quantity in the gov
erning equations throughout the entire depth. Rather than alter 
the initial free-surface elevation, the present adjustment pro
cedure circumvents this problem by altering how quickly the 
initial conditions are applied. This simpler approach has been 
outlined by Dommermuth (1993) who reduces the initial im
pulse of the free-surface stresses by applying an atmospheric 
forcing term. The details and performance of this procedure 
are provided in this paper. 

The adjustment procedure is used to simulate whirls. Sarp-
kaya and Suthon (1990 and 1991) and Sarpkaya (1992), who 
use a two-dimensional vortex element method, show that whirls 
may undergo a reverse energy cascade that leads to the for
mation of large vortical structures. Our formulation, which 
allows significant core deformation, extends their results to 
three-dimensional flows with a free surface. 

Comparisons between unadjusted and adjusted solutions 
show that high-frequency standing waves are generated if the 
flow is not given sufficient time to adjust. These standing waves 
obscure the true hydrostatic balance of the free-surface ele
vation with the component of the pressure that is induced by 
the whirls. We call this particular component of the pressure 
the vortical pressure. A precise mathematical definition of the 
vortical pressure is provided in Dommermuth (1993), and a 
brief derivation is provided in the next two sections. 

The hydrostatic balancing that occurs between the free-sur
face elevation and the vortical pressure affects interpretations 
of shadowgraph images of free-surface flows. Sterling et al. 
(1987) show that the intensity of shadowgraph images is pro
portional to the curvature of the dimples that are formed by 
individual whirls. By comparing shadowgraph images to meas
urements using digital particle image velocimetry, Gharib and 
Weigand (1992) observe that the dimples are not centered over 
the whirls. In a private communication, Alex Weigand had 
suggested that dimples and pressure are related. The numerical 
simulations confirm that pressure field of the whirls forms 
dimples on the free surface. At the low Froude numbers that 
occur in the laboratory, which are also typical for full-scale 
ship wakes, the depths of the dimples are directly proportional 
to the pressure. So the intensity of shadowgraph images in
dicates local variations in the pressure field of the whirls rather 
than the position of individual whirls. 

Field Equations 
Consider the unsteady incompressible flow of a Newtonian 

fluid under a free surface, and let u = u(x, y, z, t) = (u, v, w) 
represent the three-dimensional velocity field as a function of 
time. Applying Helmholtz's theorem gives 

u = V 0 + 1l, (1) 
where <$>{x, y, z, t) is a velocity potential which describes the 
irrotational flow and 11 = (x, y, z, t) = (U, V, W) is a solenoidal 
field which describes the vortical flow such that 

V2<£ = 0 (2) 
V-<U = 0. (3) 

Since </> satisfies Laplace's equation and the divergence of the 
rotational field 11 is chosen zero, the total velocity field u 
conserves mass. Note that 11 may contain a portion of the 
irrotational field depending on how the boundary conditions 
are defined. 

Based on this Helmholtz decomposition of the velocity field, 
define the total pressure n in terms of a vortical pressure P 
and an irrotational pressure as follows: 

dd> 1 1 
n = P - ^ - - V 0 . v < A - ^ . (4) 

Here, the pressure terms are normalized by pu2
e where ue is 

characteristic velocity of an eddy and p is the density. 
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F2 = u2/gle is the Froude number and le is the characteristic 
length of an eddy. The vertical coordinate z is positive upward, 
and the origin is located at the mean free surface. Substituting 
these decompositions (1 and 4) into the Navier-Stokes equa
tions gives 

ait I 
— + ((11+ V<M-V)1L + (1l-V)V4>=- VP + — V21i. (5) 
at Ke 

where Re = uele/v is the Reynolds number and v is the kinematic 
viscosity. • 

The divergence of the momentum Eqs. (5) used in combi
nation with the mass-conservation Eqs. (2) and (3) can be used 
to derive a Poisson equation for the vortical pressure. This 
equation expressed in indicial notation (£/,= (U, V, W)) is as 
follows: 

V P= - — l — - — 2—L —. (6) 
dXj dXj dXi dXjdXi 

As shown by Dommermuth (1993), the vortical pressure is also 
subject to a solvability condition. 

Exact Free-Surface Boundary Conditions 
The Helmholtz decomposition of the velocity field requires 

that an additional boundary condition be imposed on the free 
surface. An expedient boundary condition that can be specified 
is that the normal component of the rotational velocity is zero 
on the free surface: 

H - n = - ^ - ^ + ^ 0 . (7) 
Vvl+vl+i 

where z = i\(x, y, t) is the free-surface elevation and n is the 
unit normal on the free surface. The preceding constraint which 
is imposed on the rotational velocity field means that the ev
olution of the free-surface elevation is entirely prescribed in 
terms of the free-surface elevation itself and the velocity po
tential as follows: 

dr) 

where everything is evaluated on the exact position of the free 
surface, z = r\-

The normal stress on the free surface must balance with the 
atmospheric pressure and the surface tension: 

d4> 1 2 2 2 1 
~^ + 2 (•<t>x + <t>y~<t>z) + ('<)x<t>x + Vy4>y)<f>z + -5i V 

= P-^-R7fe + 4-w;V-n' (9) 

where Pa is the atmospheric pressure, We = pu2le/Tis the We
ber number, and Tis the surface tension. d/dt = d/dt+ V<£' V 
is a substantial derivative. «,• are the components of the unit 
normal on the free surface and «,• = £/,• + d^/dXj is the total 
velocity. In addition to the normal-stress condition, there are 
also two tangential-stress conditions that are provided in Dom
mermuth (1993). 

One advantage of the Helmholtz formulation relative to a 
primitive-variable formulation is the separation of the potential 
portions of the flow from the vortical portions of the flow. 
Based on this separation, the terms that excite spurious high-
frequency waves can be isolated as shown in the next section. 

Adjustment Procedure 
Recall that le and ue denote the length and velocity of a 

characteristic eddy, then the time scales of the vortical and 
wavy motions are respectively tv~le/ue and tw~^/le/g, where 
g is gravity. The ratio of these two time scales is tw/tv = ue/ 
\[gle = Fn where Fr is the Froude number. At low Froude num-
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bers, when the time scale of the vortical motions is longer than 
the time scale of the wavy motions, the free-surface elevation 
(77) balances with the vortical pressure field (P) that is induced 
by the eddys: 

i? = F?PU_o+0(F?), (10) 

where we have taken the inviscid limit of the normal-stress 
condition (9) at a low Froude number and assumed that the 
effects of capillarity are small. The balancing between the 
gravity and vortical pressure terms is primarily hydrostatic, 
no dispersive waves are generated to leading order. For initial-
value problems, Eq. (10) is only valid for time t>tw, i.e., after 
the dispersive waves have propagated away (Hall, 1979). Since 
finite domains do not permit the radiation of waves, standing 
waves will form if the flow is not given sufficient time to adjust. 

The preceding example can be generalized to initial-value 
problems by including the time-dependent terms in Eqs. (8) 
and (9). The linearized inviscid free-surface boundary condi
tions for a single Fourier mode are 

a7+FT=p-p* 

drj 

Hi = k4>, (11) 

where 7), 4>, P, P„ are the normalized Fourier modes of the 
free-surface elevation, the velocity potential, the vortical pres
sure on the free surface, and the atmospheric pressure, and k 
is the wavenumber. These equations are valid at low Froude 
numbers, when the coupling between potential and vortical 
portions of the flow is weak. The preceding equations can also 
be made valid for capillary waves by making a small modi
fication to the hydrostatic term. 

Suppose 4> and 7) are initially zero, P is a constant with respect 
to time, and P„ = 0, then the unadjusted solution to Eq. (11) 
is 

r)= -F 2 P(cos(wf) - l ) 

_ P 
<t> = — sin(co/), 

CO 

(12) 

where co2 = ArFr"
2 is the wave frequency. The oscillatory com

ponents represent undesirable standing waves, and the mean 
component is the desirable hydrostatic response. Since the 
amplitudes of the standing waves are equal to the mean hy
drostatic response, the correlation between the vortical pres
sure and the free-surface elevation is very poor. We can remedy 
this situation by applying an atmospheric pressure that reduces 
the impulse of the vortical pressure as follows: 

Pa = Pexp 
& 

(13) 

where 5 is the adjustment time. To minimize transients, the 
adjustment time is chosen greater than the wave period. The 
adjusted solution to Eq. (11) is 

7) = F2P(1 - exp( - a2t2)) - 2F2P -5 exp( - a2t2) 
CO 

2 

+ 2F?P^cos(coO + 0(a4) 
CO 

2/ 
,2/2-, 

4> = 2P —exp( -o r r ) 
IP a 

2 sin(a>0 + O(a4), (14) 

where a = l/S<co/27r. The exponential terms are small after 
two standing-wave periods (t>25), and the oscillatory terms 
relative to the mean hydrostatic term are order 2aVco2< 1/27T2. 
So for reasonable adjustment periods, we can reduce the am

plitude of the standing waves by almost two orders of mag
nitude. 

Based on Eq. (13), a whole family of filters can be defined 
with the general form: 

Pa = Pexp(-(at)
m) (15) 

Based on numerical analysis, the optimal exponent w«2 .42 
minimizes the amplitude of the standing wave relative to the 
mean hydrostatic response when a = 1 /27r and w = Ar = 1. In this 
case, the relative"amplitude of the standing wave («~5.01 
x 10 ~2) is slightly better than the Gaussian filter with m = 2 
(a = 6.18xl0~ 
study. 

). The Gaussian filter is used in the present 

Numerical Simulations 

The adjustment procedure is applied to the unsteady and 
incompressible Navier-Stokes equations with exact free-surface 
boundary conditions. A Helmholtz decomposition is used to 
decompose the flow field into wavy and vortical components. 
The wavy and vortical portions of the flow are modeled using 
a velocity potential and a solenoidal field (see Eqs. (2) and 
(3)). The system of equations are discretized using a fourth-
order finite-difference formulation. A third-order Runge-Kutta 
scheme is used to perform the numerical time integration. The 
details of the numerical algorithm are provided in Dommer-
muth (1993). 

As an illustration of the adjustment procedure, we consider 
the chaotic interaction of sixteen whirls (4 rows X 4 columns) 
in a box. The sides and bottom of the box use free-slip bound
ary conditions, and the top of the box uses exact free-surface 
boundary conditions. The vertical coordinate z is positive up
ward, and the origin is located at the mean free surface. The 
lengths of the box along the x-, y-, and z-axes are respectively 
denoted L, W, and D. The initial vorticity distribution is 

Qr 

i=0 j = 0 

•s,j exp 
{x-if + {y-jf 

for - £ > < z < 0 , (16) 

where coc is the core vorticity and rc is the core radius. stj= ± 1 
is a random sign subject to the constraint that the total cir
culation on the free surface is zero. The free-surface elevation 
and the velocity potential are initially zero. The flow is initially 
two-dimensional, but the deformation of the free-surface leads 
to three-dimensional interactions. 

The rows and columns of whirls are evenly spaced based on 
a characteristic length 4 = 1 . The characteristic velocity, ue — T/ 
(2TT/C)= 1, is equal to the velocity one whirl induces on its 
nearest neighbor. Y = 7rr2coc is the circulation of a single whirl. 
Based on these scales, the Reynolds number is Re = uAJv = IV 
(2irx), the Froude number is F2 = u2

e/(gle) = T2/(4w2gll), and 
the Weber number is We = pu2

ele/T=pT2/(4ir2T!e), where v is 
the kinematic viscosity and T is the surface tension. 

Unadjusted and adjusted simulations are performed with 
Re=100, Fr"

2 = 300, and W e = l . The ratio F?/We= T/ipgl2) 
= 1/300 corresponds to a 5 cm gravity/capillary wave in water. 
In this parameter regime, the free-surface elevation and the 
vortical pressure are hydrostatically balanced as in Eq. (10). 
The adjusted simulation reduces the impulse of the vortical 
pressure and the normal component of the viscous stress by 
applying an atmospheric forcing term: 

P„= \P-
R„ 

dllj dUj 

dXj dXj 
exp 

-f (17) 

whre n, are the components of the unit normal on the free 
surface and u,= Uj+dcfr/dx, is the total velocity. U-, and </> are 
the solenoidal and potential velocity fields. At low Froude 
numbers the viscous term relative to the vortical pressure term 
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in the preceding equation is 0(F2). Even though this term is 
small, the viscous normal stress is also adjusted because it too 
can generate spurious high-frequency standing waves. The ad
justment time (5) is chosen larger than the wave period of the 
longest standing wave that is permitted in the computational 
domain. The details of the numerical simulations are sum
marized in Table 1. 

The following table highlights some important differences 
between unadjusted and adjusted simulations: 

'/min ^max ' Vx ' max ' Vxx ' max ' Vy ' max ' Vyy ' max 

Unadjusted -0.0373 0.0512 0.203 27l9 0.192 1/71 
Adjusted -0.0269 0.0225 0.0406 0.201 0.0454 0.206 

We observe that the extreme free-surface amplitudes vary from 
25 to 50 percent of the laminar boundary-layer thickness at 
the free surface (R<T1/2 = .10) depending on the solution pro
cedure. The maximum wave slopes for the unadjusted solution 
are almost 50 percent of Stokes two-dimensional breaking-
wave criterion, but the wave slopes of the adjusted solution 
are only 10 percent. The radii of curvature are the same order 
as the core radius for the unadjusted solution, but the curvature 
of the adjusted solution is an order of magnitude less. The 
results imply that unadjusted solutions may be prone to un
natural wave breaking at higher Froude numbers. 

The balance of energy quantifies other differences between 
the adjusted and unadjusted solutions. A conservation of en
ergy formula can be derived by taking the vector product of 
the total velocity with the momentum equations integrated over 
the fluid volume. The transport theorem in conjunction with 
divergence theorem may be used to simplify the resulting equa
tions. Upon substitution of the exact free-surface boundary 
conditions into this energy equation, the following formula 
may be derived: 

R e Jv \dXj dXj/ dxj 

where S/is the free surface and S0 is the projection of the free 
surface onto the x.y-plane. The first term (d£,uv/dt) represents 
the change in kinetic energy of the vortices integrated over the 
material volume of the fluid (V), the second and third terms 
(d&^/dt and d&m/dt) represent the changes in the kinetic and 
potential energies of the waves, the fourth term (d'Wpa/dt) 
represents the power generated by atmospheric forcing, the 
fifth term (dV?sl/dt) represents the power in capillary waves, 
and the last term (dV?„/dt) represents the power expended by 
viscous stresses. Note that the work due to stresses on all other 
boundaries besides the free surface is assumd to be zero. 

Figure 1 shows the two dominant terms in the energy balance 
of the adjusted solution procedure. For time t = 2 the kinetic 
energy is almost half of its initial value due to viscous dissi
pation. Figure 2(a) shows the potential energy for the adjusted 
and unadjusted solutions, and the work due to atmospheric 
forcing in the adjusted solution. Comparing Figs. 1 and 2(a) 
shows that the potential energies are 0(F*&vu/D), where &vu/ 
D is the depth-averaged kinetic energy of the vortices. In Fig. 
2(b), the kinetic wave energy for the adjusted solution is 
0(FrS[/c//D), which is expected for flows that are dominated 
by hydrostatics. (The kinetic wave energy is scaled by Fr

 2 in 
this figure, and the jaggedness of the curve is due to a lower 
sampling rate than the other curves.) The potential energy of 
the unadjusted solution is very oscillatory. The period of the 
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Table 1 Data for numerical simulations of whirls 
Item 

Re 
Fr2 

we rc 
oic 

8 
L 
W 
D 
At 

N-

Niter 

^ m a x 

7 

Unadjusted 

100 
300 

1 
0.25 
32 
0 
4 
4 
4 

0.001 
2501 

2 
73 
73 
73 

0.125 

Adjusted 

100 
300 

1 
0.25 
32 
1 
4 
4 
4 

0.001 
2501 

2 
73 
73 
73 

0.125 

Fully nonlinear free-surface boundary conditions are used on the top of the 
computational domain and free-slip boundary conditions are used on the sides 
and bottom of the computational domain. The Reynolds, Froude, and Weber 
numbers are respectively denoted by Re, Fr, and Wc. The initial core radius and 
peak vorticity are denoted by rc and uc. & is the adjustment time. The lengths 
of the computational domain along the x-, y-, and z-axes are, respectively, L, 
W, and D. The time step is At. The number of time steps is Nlimc, and the 
number of iterations required to solve the nonlinear elliptic equations is Nh„. 
The number of grid points along the x-, y-, and z-axes are respectively 7max, Jmla, 
and A"max. The parameter 7 specifies the grid solution in the free-surface boundary 
layer. More detailed descriptions of the numerical parameters are provided in 
Dommermuth (1993). Note, however, that the Reynolds, Froude, and Weber 
numbers are defined differently in the present paper. 

Zm 1—1 | 1 1 1 1 1 1 1—| 1 1 1 1 1 1 I | . 1—I ] 1 1—r 

128 - 1 

t 100 -

0 Li-i—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1—1 1 I 1 1 1 1 J 
0 .2 .4 .6 .8 1.0 1.2 1.4 1.6 1.6 2.0 2.2 2.4 2.6 

Fig. 1 The energy balance of the adjusted solution. (—1—) and (—2—) 
denote the kinetic energy (8UU + 8^) and the negative of the work due to 
viscous stresses (-'W,) 

oscillation corresponds to the beating of standing waves, and 
the period gets longer as time increases because the short stand
ing waves rapidly attenuate. The oscillations in the kinetic wave 
energy of the adjusted solution are from remnants of standing 
waves. Figure 2(a) also shows that the amount of work required 
to prevent the formation of standing waves is the same order 
as the potential energy. The work due to atmospheric forcing 
levels off near time t=1.5. After this time, the free-surface 
elevation is fully adjusted. 

Both the unadjusted and adjusted numerical simulations 
conserve energy to within 0.1 percent relative to the initial 
kinetic energy. Based on this level of energy conservation and 
the convergence studies that are reported in Dommermuth 
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T I K I 

Fig. 2(b) 

Fig. 2 The potential and kinetic wave energy. In Part (a) (—1—) and 
(—2—) denote the potential energy (£„) of the adjusted and unadjust
ed solutions, and (—3—) denotes the negative of the work required to 
adjust the solution by atmospheric forcing (-Wpa). In Part (b) (—1—) 
denotes the scaled kinetic energy of the waves (SM/Fr

2) for the adjusted 
solution. 

(1993), both numerical simulations are estimated to have three 
significant digits of accuracy. 

The energy plots in Fig. 2(a) are similar to the surface-
pressure plots that Williamson and Temperton (1981) use to 
illustrate the differences between initialized and uninitialized 
solutions of a global baroclinic forecast model. They used 
Machenhauer's (1977) method to eliminate undesirable pres
sure fluctuations. The comparisons between their uninitialized 
and initialized simulations clearly demonstrate the effective
ness of the procedure. Similarly, the potential energy plots in 
Fig. 2(a) illustrate the effectiveness of present adjustment pro
cedure as applied to vortical free-surface flows in deep water. 

A characteristic wavenumber that measures where most of 
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Fig. 3 The characteristic wavenumber. (—1 —) and (—2—) denote k for 
the adjusted and unadjusted solutions 

the work due to surface tension is performed can be defined 
by P= -We*Wj,/F?SOT, where £ is a function of capillary-
wave energy relative to gravity-wave energy. This characteristic 
wavenumber is plotted in Fig. 3. The initial distribution of 16 
whirls corresponds to £=2TT. This estimate is slightly exceeded 
in Fig. 3 because of the random signs that are assigned to each 
whirl. For both the adjusted and unadjusted simulations, fc 
gets smaller as time increases. This evidence tends to support 
Sarpkaya's (1992) observations and calculations of a reverse 
energy cascade. However, the present simulations are primarily 
two-dimensional and the Reynolds number is very low. The 
characteristic wavenumber could merely indicate that high 
wavenumbers are attenuated more rapidly than low wavenum-
bers. Full three-dimensional numerical simulations at higher 
Reynolds numbers need to be performed before making a final 
conclusion. For time t>2, the characteristic wavenumber of 
the adjusted solution is almost three times lower than it is for 
the unadjusted solution. This effect is due to the high-fre
quency standing waves that are present in the unadjusted so
lution. 

Based on the energy plots in Fig. 2(a) and the characteristic-
wavenumber plots in Fig. 3, we can conclude that a remote 
sensing simulation that used the unadjusted solution instead 
of the adjusted solution would predict free-surface elevations 
that have wave amplitudes with twenty-five percent relative 
error centered at a wavenumber that is almost three times too 
high. Based on these large discrepancies, remote sensing sim
ulations should use adjusted solutions to make better predic
tions of radar backscatter from the ocean surface. 

The effects that are measured by fc are also visible in the 
contour plots of Figs. 4(a-e), where various free-surface quan
tities are plotted near the beginning and the end of the adjusted 
solution. Figures 4(a) and (b) plot the initial pressure field of 
the whirls (the vortical pressure) and the z-component of the 
vorticity at t-0. Recall that the initial free-surface elevation 
is zero. The initial distribution of whirls (4 rows X 4 columns) 
is clearly visible in Fig. 4(b). Comparing Parts (a) and (b) 
shows that the vortical pressure and the whirls are poorly 
correlated. Figures 4(c-e) show the free-surface elevation, the 
vortical pressure, and the whirls at the end of the simulation, 
when the solution is fully adjusted. As a result of amalga
mation, only seven distinct whirls are visible in Fig. 4(e). Once 
again, the correlation between the vortical pressure and the 
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whirls is poor, but vortical pressure and the free-surface ele
vation are very well correlated. A detailed comparison of Parts 
(c) and (d) shows that the dimples on the free surface and the 
vortical pressure are hydrostatically balanced (see Eq. (10)). 
Based on this hydrostatic balance, the dark spots that are 
observed in shadowgraph images of free-surface flows cor
respond to the dimples that are formed by the vortical-com
ponent of the pressure. Since the dimples are not necessarily 
centered over the whirls, the dark spots are also not centered 
over the whirls. 

The cross-correlation coefficient for the free-surface ele
vation and the vortical pressure is plotted in Fig. 5 for the 
adjusted and unadjusted solutions. The definition of this coef
ficient is provided below: 

c0(a,b) = 
[a,b] 

(ia,a)[b,b]Y 

where a and b are two-dimensional functions and [a, b] denotes 
a surface integral over the xv-plane. Near the ends of the 
simulations, the correlation for the adjusted solution is almost 
three orders of magnitude stronger than it is for the unadjusted 
solution. The correlation is stronger for the adjusted solution 
because there are no standing waves. 

The cross-correlation coefficient for the z-component of 
vorticity on the free surface and the free-slip bottom is plotted 
in Fig. 6 for the adjusted solution. The good correlation sup
ports Leighton et al.'s (1992) assumption that a free-slip 
boundary condition models a clean free surface at low Froude 

P(z = ri,t = o) V(t = 2.5) 

Fig. 4(a) Fig. 4(c) 
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fl,(z = j , , t = 2.5) 

Fig. 4(e) 

Fig. 4 Contour plots of free-surface quantities. Parts (a) and (b) cor
respond to f = 0 and parts (c-e) correspond to ( = 2.5 for the adjusted 
solution. The solid and dashed lines respectively denote positive and 
negative quantities. 

numbers. The slight deterioration in the coefficient illustrates 
that the approximation is valid for times t< 0(Fr~

2). The pres
ent calculations show that the free-surface elevation can be 
calculated from the pressure using free-slip boundary condi
tions. As is evident in Dommermuth's (1993) simulations of 
vortex tubes impinging on a free surface, the approximation 
is valid even at intermediate Froude numbers. 

Conclusions 
Unadjusted numerical solutions to vortical free-surface flows 

are prone to developing high-frequency standing waves. These 
high-frequency standing waves obscure the true hydrostatic 
balance of the free-surface elevation and the vortical pressure 
that actually occurs in nature. The generation of high-fre
quency standing waves is minimized by reducing the impulse 
of the vortical pressure. Numerical simulations of whirls il
lustrate the effectiveness of the procedure relative to unad
justed initial conditions. The results of numerical simulations 
show that dimples are formed on the free surface by the pres
sure field of whirls. The long-lasting dark spots that are ob
served in shadowgraph images of free-surface flows are not 
necessarily the signature of just a single whirl. Similarly, the 
center of a dark spot may not correspond to the center of a 
whirl. The results of the numerical simulations confirm that 
a free-slip wall is an useful approximation of clean free surfaces 
at low to intermediate Froude numbers. Aside from applica
tions to laboratory measurements, direct numerical simulations 
of free-surface turbulence, and remote sensing of ship wakes, 
the adjustment procedure can also be applied to numerical 
simulations of the nonlinear interactions of waves amongst 
themselves and vortices with ambient waves (Dommermuth, 
1992). 
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Fig. 5 The cross-correlation coefficient of the free-surface elevation 
and the vortical pressure. (—1—) and (—2—) denote the adjusted and 
unadjusted solutions. Zero is perfect correlation. 
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Fig. 6 The cross-correlation coefficient of the free-surface vorticity and 
the bottom vorticity. The results are plotted for the adjusted solution. 
Zero is perfect correlation. 

ulations have been performed on the CRAY Y-MP 8/8128 at 
the Primary Oceanographic Prediction System (POPS). 
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Mass Imbalance Error of 
Waterhammer Equations and Leak 
Detection 
The waterhammer equations can be used to compute mass inventory changes for 
pipeline leak detection. In such applications the pipeline is monitored continuously 
in time and there is no clear demarcation between steady-state and transients. This 
paper addresses a mass imbalance error of the waterhammer equations. We establish 
that the net mass influx error for the waterhammer equations at the steady-state 
with maximum flow-rate bounds the same error during transients. A method to 
evaluate this bound is presented. Using petroleum products pipelines as an example, 
we show that the waterhammer equations are not accurate enough for leak detection 
in some systems. 

1 Introduction 
Using real-time data from a Supervisory Control and Data 

Acquisition (SCADA) system as boundary conditions, a real
time transient flow simulator can be an effective tool for mon
itoring abnormalities in pipelines. Many crude oil and petro
leum products pipelines use such an approach for leak detection 
(API, 1991). 

Some transient flow simulations use the waterhammer equa
tions. In these equations, two convective-change terms are 
neglected. This simplification is well accepted for transients 
studies where the primary focus is on pressure. However, ad
vances in SCADA technology make it possible to drive the 
simulators with increasingly accurate data. Consequently, the 
demand for higher model accuracy has increased as well. The 
simplification may limit model accuracy. This paper addresses 
a mass imbalance error associated with the waterhammer equa
tions. A realistic bound for this error, its determination, and 
its impact on leak detection are discussed. 

2 Leak Detection and Transient Simulations 
The methods for leak detection vary from intermittent phys

ical inspection to software-based real-time monitoring. Within 
the software-based category, there are many variations. We 
only address mass balance methods here. 

The state of flow in a pipeline may be steady or transient, 
and there is no clear demarcation between the two. The simplest 
approach to leak detection uses the idea that if there is no leak, 
then the mass fluxes at the pipe ends ought to be equal. When 
the flow is not at steady-state, a difference in the mass fluxes 
does not imply leakage. Transient flow simulations account 
for any mass inventory changes. The transient model simulates 
steady-state flow as a special case of transients. However, the 
accuracy of the model may vary for these two flow regimes. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
May 8,1992; revised manuscript received February 22,1993. Associate Technical 
Editor: F. T. Dodge. 

3 Governing Equations 

The equations that describe isothermal transient flow are 
(Wylie and Streeter, 1983) 

1 dP r,dV dV fV\V\ 
~T7,+ v^T- + ̂ + „ ^ + g s i n a = 0 (1) 
p dX dX dT 2D 

1 (bP dP\ 8V 

P^{3f+V3x)+^° (2) 

where P = pressure, V = discharge velocity, D = pipe di
ameter,^ = cross-sectional area of the pipe, g = gravitational 
acceleration,/ = Darcy-Weisbach friction factor, p = density, 
a = wave speed, X = distance, T = time, and a = the upward 
angle between the pipe and the horizontal. 

The governing equations are hyperbolic and can be trans
formed into a pair of compatibility equations 

dV 1 dP . fV\V\ n 

~~^± 7Z,+ g sina + -—•—— = 0 
dT padT s 2D 

valid along the characteristics 

d X i , 

— = v±a 

dT 

The wave speed a is expressed as 
K/p 

\+KDci/(Ee) 

(3) 

(4) 

(5) 

where E = Young's modulus of elasticity of the pipe material, 
K = bulk modulus of the fluid, e = pipe wall thickness, and 
Ci = a constant that reflects the state of stress in the pipe wall 
(Wylie and Streeter, 1983). 

Note that density appears in the coefficient of dP/dT in Eq. 
(3). We view density as pressure dependent and wish to elim
inate the density to avoid approximation during integration. 
This is done by replacing the pressure in Eq. (3) with piezo-
metric head H, using the generalized definition 
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H- r dP 

P(P) 
+ Z (6) 

where Z is the elevation of the pipe with respect to a datum 
Equation (3) becomes 

gdH dV fV\V\ gs ina 
± ^ — + — + -

a dT dT 
ID 

V=0 (7) 

Like Eq. (3), Eq. (7) is valid only along the characteristics 
defined by Eq. (4). 

4 Uncertainties in Fluid Data and Modeling Assump
tions 

We need to justify the usage of variable density but constant 
wave speed in solving Eqs. (1) and (2). Liou (1992) summarized 
the density-pressure relationship (API 1984-a) and the density-
temperature relationship (ASTM, 1980) for petroleum prod
ucts. From these relationships and using the root-sum-squares 
(RSS) method, the total probable errors (TPEs) for density 
and for wave speed can be expressed as 

8p_ 

P 

P 8K 
K-P K 

5a_l 

a ~2 
8K 
K 

(8) 

(9) 

where C r is a volume correction factor for temperature. ASTM 
(1980) states an uncertainty of ±0.05 percent for CT. API 
(1984a) gives an uncertainty of ±6.5 percent for K. Both 
uncertainties are associated with a 95 percent confidence level. 
From Eq. (8), the corresponding TPEs in density are ±0.05 
percent and 0.078 percent at 0 and 7000 KPa. From Eq. (9), 
the TPE in wave speed is ±3.25 percent at all pressure levels. 

Liou (1992) established the variations of density and wave 
speed (excluding the influence of pipe wall) of petroleum prod
ucts for pressures ranging from 0 to 7000 kPa at 15 °C. Using 
the values at 0 kPa as the basis, the variations in a gasoline 
with a reference density (density at 1 atm and 15°C) of 700 
kg/m3 are 0.90 percent for density and 2.20 percent for wave 
speed. We see that, over the pressure range considered, the 
density changes significantly exceed the TPE in the density 
data. At the same time, the wave speed changes over the pres
sure range fall within the TPE of the associated data. There
fore, we use variable density but constant wave speed in the 
governing equations. 

5 Steady-State Solution 

It can be shown that for steady-state, the two compatibility 
equations in Eq. (7) yield 

/yi dV 1 
dX+2D{V2 -a2) 

dH 

dX~ 
fW 

gFs ina 
+ V

2-<?~" 

V sina 
2gD(V2-a2) V'-a1 

(10) 

(11) 

The effect of dropping the convective terms on the steady-
state solution for nonhorizontal pipes can be found in Wylie 
(1984) and in the discussions and closure of Wylie (1984). We 
limit our scope to horizontal pipes only. 

Since the fluid velocity is much smaller than the wave speed, 
we can approximate V -a2 by -a2 and obtain the steady-
state solution for velocity and piezometric head as 

v-r.n-*p~ (12) 

H=H^llnUj^ 
2g I D<< 

(13) 

where V-, and H\ are the velocity and head at the pipe inlet. 

6 Changes of Density, Cross-Sectional Area, and Mass 
Inventory During Transients 

Density of liquids is related to pressure through bulk mod
ulus. For water where the bulk modulus can be considered as 
constant, it can be shown that 

P=Poe
p/K (14) 

where p0 = density at zero gauge pressure. Equations (6) and 
(14) yield the common expression P = pgH. Usually P/K is 
small and p is closely approximated by p0. For petroleum prod
ucts, we have (Liou, 1992) 

P = P o ^ (15) 

P = K(l-yfl^2p0gH/K) (16) 

Petroleum products are much more compressible than water 
and their density changes with pressure may be significant. 
Similar relationships can be obtained for other fluids with 
known relationships between bulk modulus, density, and pres
sure. We will use petroleum products as an example for the 
remainder of this paper. 

For thin-walled pipe undergoing elastic deformation, the 
pipe cross-sectional area is related to the pressure by 

Dc,P 
A=A0e^ (17) 

where A0 = pipe cross-sectional area at P = 0. 
At any instant and for the entire pipeline, the rate of mass 

inventory increase S is 

S = (pVA)inte-(pVA)0Utlet (18) 

7 Net Mass Flux Error in Waterhammer Equations 

For many applications it is acceptable to neglect the con
vective terms VdV/dX and VdP/dX in Eqs. (1) and (2). The 
simplified equations are known as the waterhammer equations 
(Parmakian, 1963). After the transformation, the compati
bility equations are identical in form to Eq. (7) but the dif
ferentiations are now carried out along the characteristics 

d x nax 
-£=±0 (19) 

This simplification yields constant slopes of the character
istics. It enables straight forward integration and speedy sim
ulations. Both features are desirable in real-time simulations. 
However, the simplification causes a mass imbalance. This is 
apparent at the steady-state. Equation (2) dictates that, with 
VdP/dX dropped, dV/dX = 0 when dP/dT = 0. Thus the 
simplified equations yield a uniform velocity at steady-state. 
We known from Eqs. (12), (15), and (17) that the velocity 
increases in the downstream direction and that density and 
pipe area at the pipe inlet exceed those at the outlet. Thus the 
steady-state uniform velocity from the waterhammer equations 
results in a mass imbalance if local values of p and A are used 
to compute mass fluxes. Consequently, mass imbalance during 
transients should also exist. This mass imbalance is insignifi
cant for most applications where pressure is the primary con
cern. However, it is important for applications where high 
accuracy of mass flux is required. 

8 Method of Approach 
We compute head, velocity, and mass inventory changes for 

the full equations and for the waterhammer equations over a 
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range of transients. The differences between the two equation 
sets are establish and considered to be the errors of the wa-
terhammer equations. The magnitude of the convective terms 
are then examined. This leads to the formulation of a method 
to determine a reasonable bound for the mass imbalance error. 

Next, we establish the TPEs in petroleum product properties 
and in volumetric flow-rate measurements. Relative to these 
uncertainties, we discuss the adequacy of waterhammer equa
tions in pipeline leak detection. 

9 System Specification, Boundary Conditions, and 
Numerical Solution Procedure 

Liou (1991) demonstrated that the waterhammer equations 
can be scaled so that all system parameters can be grouped 
into a single constant R 

fL V, JL 
fl = r=—= 

2D a 2D 
Ma, (20) 

where L denotes the length of the pipeline and Ma, is the Mach 
number at the inlet. Thus, on a dimensionless basis, diverse 
systems with a common R behave the same if their scaled initial 
and boundary conditions are equal. Liou et al. (1992) provided 
a distribution of R for 209 petroleum products pipeline seg
ments. The R values vary from 0.07 to 34. Of these values, 
64 are below 1, 111 are below 2, 134 are below 3, and 186 are 
below 10. An R value around 2 is common and is used here 
as an example. 

One realization of this R value is a 0.61 m (2 ft) diameter 
98.17 km (61 mile) long steel pipe carrying gasoline with a 
reference density of 700 kg/m3 and a kinematic viscosity of 
4.65x 10~7 m2/s (5.Ox 10"6 ft2/s). A constant inlet head of 
500 m (1640 ft) and an initial inlet velocity of 2 m/s (6.56 ft/ 
s) are used. The initial friction factor is 0.0122. The pressures 
at the pipe inlet and outlet are 3439 kPa (498.8 psi) and 668 
kPa (96.9 psi) respectively. Corresponding to an average pres
sure of 2054 kPa (298 psi) and an ambient temperature of 
15°C, the bulk modulus of the gasoline is 760.1 MPa (110,315 
psi), and the wave speed of the system is 983 m/s (3225 ft/s). 

We create transients starting at 12 L/a seconds by linearly 
reducing the outlet velocity to 1 m/s (3.28 ft/s) in L/a seconds. 
We then hold the outlet velocity at 1 m/s for 12 L/a seconds 
before restoring it back to 2 m/s in L/a seconds. We continue 
the simulation for another 12 L/a seconds before stopping. 
This boundary condition allows us to see the density and mass 
inventory discrepancies during periods of mass storage increase 
and decrease. In a separate simulation, the ramping periods 
for the exit velocity are increased to 32 L/a seconds so that 
we can examine the effects of transient severity. For leak de
tection purposes, we can regard the L/a case as severe transients 
while the 32 L/a case is mild (Liou, 1992). 

In leak detection practice, a flow regulator is usually used 
at the outlet of a pipeline. It may seem more appropriate to 
use a valve as the outlet boundary condition instead of a spec
ified velocity. However, a highly accurate exit flow-rate is 
always measured and used directly in leak detection software. 
Obtaining the outlet velocity indirectly through valve modeling 
is undesirable since the valve's position and its inherent flow 
characteristic introduce additional uncertainties. The 
specified velocity at the outlet is the preferred and natural 
boundary condition to use. Similarly, a specified head is a 
natural inlet boundary condition since the head is known ac
curately through direct pressure measurement at the pump 
discharge. Modeling a pump itself would needlessly involve 
additional uncertainties. 

The method of characteristics with specified time intervals 
and with a second order approximation to the frictional term 
was used. The details of this method can be found in Wylie 
and Streeter (1983). One difference is that for the full equations 
the velocities at the two ends of the characteristics were used 
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Fig. 2 Net mass influx comparison—mild transients 

to establish the directions of the characteristics. This was im
plemented through linear interpolations and iterations. The 
explicit formula of Swamee and Jain (1976) is used to obtain 
the friction factor as the Reynolds number changes during 
transients. The friction factors so obtained deviate no more 
than 3 percent from the Colebrook-White formula. 

10 Results 
The net mass influxes S for the two modeling approaches 

are plotted in Fig. 1 for the mild and in Fig. 2 for the severe 
transients. It is seen that the error is the greatest at the initial 
steady state for both cases. 

The head and velocity comparisons between the two equation 
sets are shown in Figs. 3 and 4 for the severe transients only. 
The inlet velocities are identical. At the outlet, the convective 
acceleration modeled by the full equations yields a slightly 
higher velocity. The error diminishes during the transition pe
riod, and reappears when the original steady-state is restored. 
The outlet head from the full equations is slightly lower than 
that from the waterhammer equations because of greater head 
loss associated with the higher velocity. The discrepancy be
tween the two approaches diminishes during the transition 
period, and re-appears at the final steady-state. Like the net 
mass influx, the velocities and the heads between the two ap
proaches differ the most at the initial steady-state. The reason 
for this and a more complete picture will be offered later. 

11 Accuracy of Numerical Solutions 
Interpolation errors occur when the method of character

istics is used to solve the full equations. This type of error 
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Fig. 5 Convergence of the numerical solutions 

arises due to interpolations used in obtaining heads and ve
locities between grid points. Separately, for both the full equa
tions and the waterhammer equations, discretization errors are 
introduced when the integral of the friction term over com
putational reaches is approximated by velocities at grid points. 
Both errors can be minimized if enough computational reaches 
are used in the numerical solution. Shown in Fig. 5 is the 
convergence of the numerical solution for the full equations. 
The computed outlet head for the severe transients within a 
time window around the instant of maximum error is shown. 
The percentage differences are 0.0127 between 10 and 20, and 
0.00297 between 20 and 40 reaches. These errors are even 
smaller for the mild transient case. The errors at 20 reaches 

are about two orders of magnitude smaller than the differences 
we are trying to discern (see Eq. (26) and Fig. 10). These 
numerical errors are negligible and will not be addressed fur
ther. 

12 Magnitude of the Convective Terms 
The magnitude of Vd V/dX and VdH/dX can be examined 

relative to the local changes dV/dTand dH/dT. Define 

dV 
V-

dX 

w 
dT + 

„W 
V — 

dX 

(21) 

where the subscript 0 denotes steady-state. The terms on the 
right-hand side are the average values of the entire pipeline. 
Similarly, we define 

HCr 
dX 

dH 
dT 

.dH 
dX 

(22) 

Figures 6 and 7 show these two quantities over time for two 
new transient episodes. The full equations were used to gen
erate these results. Again, a pipeline with an R of 2 was used 
as an example. The solid line represents a transient where the 
outlet velocity was increased by 50 percent in L/a seconds, 
held constant for 50 L/a seconds and then restored to the 
initial value linearly in another L/a seconds. The dashed lines 
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represent a transient where the outlet velocity was decreased 
by 50 percent and then restored in the same sequence. The 50 
L/a seconds is long enough to allow a new steady-state to 
develop before we begin to restore the original outlet velocity. 
We used the full equations with a fixed friction factor of 0.015 
in generating these two figures. The Kconvec and the //conVec 
traces stay at 1 and - 1 during the initial steady-state. They 
drop to nearly zero when dV/dT and dH/dT greatly exceed 
VdV/dX and VdH/dX during the first period of transient cre
ation. Afterwards, the flow settles towards a new steady-state 
with increased (solid line) or decreased (dashed line) velocity. 
Vcomec and Hconvec become negligible again when dV/dT and 
dH/dT are large as the restoration of the original outlet velocity 
begins. Eventually they approach 1 and - 1 as the original 
steady-state is restored. 

The limiting values reached by Kconvec and HcomeQ during the 
interceding steady-state depend on the ratio of the interceding 
steady-state velocity to the original steady-state velocity. From 
Eqs. (20) and (21), we obtain 

vdV_ = _fVA 

3X 2D01 

dX~ 
fvl 
2gD 

(23) 

(24) 

In establishing Eq. (24) from Eq. (11), we expanded the natural 
logarithm by a series and only retained the first term since 
fVJX/(Da2) is much less than unity. We see that the convective 
changes in velocity and in head are proportional to the 4th 
and the 3rd power of velocity. In Fig. 6, the limiting values 
of Fconvec for the flow increase (solid line) and flow decrease 
cases (dashed line) are 1.54 = 5.06 and 0.54 = 0.06. In Fig. 
7, the limiting values for HQOmtc for the flow increase and flow 
decrease cases reach 1.53 = 3.38and0.53 = 0.13. These figures 
show that when the interceding steady-state has a velocity 
greater than the initial steady-state value, the convective terms 
can be greatly amplified. 

Figures 8 and 9 contrast the effect of the interceding steady-
state on the net mass influx error. For flow-reduction tran
sients, the error at the initial steady-state is the greatest since 
the convective change terms are the greatest. For flow-increase 
transients, the convective terms become greater as the flow 
approaches the interceding steady-state. Consequently, the net 
mass influx error is also greater. In general, it is the net mass 
influx error of the steady-state with the maximum velocity that 
bounds the net mass influx error during transients. 

13 Net Mass Influx Error at Steady-State 
We regard all variables at the inlet as correct and examine 

the scaled net mass flux error U. From Eqs. (15), (17), and 
(18), we can write 

8S 8(pWW 
U=-

(pAV)mkt ( M POinlet 

8P 8V DCjhP 

Kinlet
+ Ee + K-P 

(25) 

where 8 represents an error, defined as the difference between 
like variables in the two modeling approaches. For example, 
8V = velocity from the waterhammer equations minus the 
velocity from the full equations. The three terms on the right-
hand side represent fractional errors in outlet velocity, in outlet 
cross-sectional area, and in outlet density. The latter two result 
from 8P at the outlet. Usually, K is much larger than P and 
E is much larger than D/e. Consequently, the fractional errors 
in cross-sectional area and in density are much smaller than 
the frictional error in outlet velocity. In our example associated 
with Figs. 1 through 4, these fractional errors are 2.55 X 10~6, 
2.13Xl0~5, and -4 .10X10" 3 respectively. In general, the 
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error in the outlet velocity dominates. Thus, t /can be closely 
approximated as 

8V Vr [ / « - — = outlet 

V, V, 
- 1 = 

1 

Vl-2J?Ma/ 
1 (26) 

In arriving at the above equation, we employ the fact the Koutiet 

is the outlet velocity from the full equations and V; is the inlet 
as well as the outlet velocity from the waterhammer equations. 

The RSS TPE in U as a result of uncertainties in / and a 
can be expressed as 

8U= 
RMHj 3 A / 2i?Ma,- 8a 

(1-2RM&,)1-5 f) + l ( l - 2 / ? M a , ) ' - 5 a 
(27) 

U and its uncertainty are plotted in Fig. 10 as a function of 
Ma, for several R values. We have used a 3 percent uncertainty 
in the friction factor / and in the wave speed a to establish the 
uncertainty bands (areas between dotted lines). It is seen that 
the fractional net mass influx error is significant even with the 
presence of uncertainties. Equations (26), (27), and Fig. 10 
apply to petroleum products pipelines as well as to pipelines 
transporting other liquids. 

14 Application Example 
Consider an initial steady state with R = 2, Ma, = 0.002 

and U = 0.40 percent (from Fig. 10). Let the velocity be 
increased to 1.5 times the initial steady-state value. This changes 
R to 3, Ma, to 0.003 and U to 0.91 percent. Let the initial 
steady-state mass flux be 100 units. The initial mass imbalance 
error of the waterhammer equation is then 0.40 units. The 
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Fig. 10 Net mass influx error of the waterhammer equations 

steady-state mass flux associated with the increased velocity is 
150 units and the mass imbalance error becomes 0.0091 x 150 
= 1.365 units. This error is 341 percent of the initial error! 
However, when the velocity is reduced to 0.5 times the initial 
steady-state value, R reduces to 1, Ma,- to 0.001 and t/to 0.10 
percent. The error is now 0.0010x50 = 0.050 units, or only 
12.5 percent of the initial error. 

In estimating the mass imbalance error of the waterhammer 
equations, one should examine the simulated velocity history 
and identify the highest "sustained" velocity. The U value 
associated with this velocity is a reasonable bound for the mass 
imbalance error. Spiky or "short duration" velocity peaks 
exceeding the sustained velocity should be discarded since the 
convective terms are negligible during those moments. 

IS Uncertainties in Volumetric Flow Measurement 
Turbine meters are common for volumetric flow measure

ments in leak detection. The flow-rate is inferred by the speed 
of rotation of turbine blades. A voltage pulse is generated as 
each blade passes the base of an externally mounted magnetic 
pickup coil. Each pulse represents a fluid volume to be deter
mined through calibration. Counting the pulses over precise 
time intervals yields volumetric flow-rate. Because the pulses 
are discrete signals, turbine meters can be highly accurate. 

Manufacturers use nonlinearity and nonrepeatability to 
characterize turbine meter performance. Typical nonlinearity 
and nonrepeatibility for turbine meters are ±0.15 percent over 
a 10:1 flow range and ±0.02 percent of reading respectively 
(Baker and Kalivoda, 1980). The nonlinearity error is a known 
bias error, and can be eliminated either by a flow computer 
or by the SCADA host in modern practice (Nunweiler, 1991). 
Nonrepeatability is a random error and not removable. In 
general, nonrepeatability is stated at a 95 percent confidence 
level (Miller, 1983). 

Turbine meters are accurately calibrated at field conditions 
using a known volume in a meter prover. There are two un
certainties in meter proving. The first is an uncertainty in the 
least significant bit of meter pulse count. An API standard 
(API 1984b) recommends that the minimum pulse count during 
proving should be greater than 10,000. Thus this uncertainty 
should be less than ±0.005 percent (i.e., ±0.5/10000). The 
second is uncertainty in prover volume under field flowing 
conditions. If the API standard is followed, this uncertainty 
should not exceed ±0.01 percent. Meter proving removes most 
of the bias error that may have developed since the last prove. 

Turbine meters behave as first-order dynamic systems for 
small flow changes about an operating point. The time constant 
for turbine meters is between 0.002 and 0.01 seconds at max
imum flow and is inversely proprotional to the operating-point 

flow-rate (Doebelin, 1983). A turbine manufacturer suggested 
a time constant of about 0.05 seconds for a range of sizes 
(Laird, 1991). Cross-country pipelines typically have an L/a 
ratio in minutes or longer. Thus turbine meters should be 
sufficiently responsive for transient flow measurements. 

With the nonlinearity bias removed, the RSS TPE is ±0.02 
percent. If the nonlinearity bias is present, then the TPE de
pends on the flow range. For the maximum 10:1 flow range, 
the TPE is ±0.15 percent, which is dominated by the nonlin
earity. For a'more common 3:1 flow range the nonlinearity is 
reduced to about ±0.03 percent and the TPE becomes ±0.04 
percent. As another indication of the high precision of turbine 
meters, Withers et al. (1972) experimentally verified claimed 
short term (i.e., bias-free) TPE of less than ±0.05 percent 
from four turbine meter manufacturers. 

Although the above uncertainty estimates are achievable, 
the TPE may be larger in actual field measurements. With 
good equipment and good practice, this error can be kept to 
within ±0.2 percent or ±0.1 percent (Laird, 1991). However, 
if meter proving is not performed regularly, unknown bias 
errors set in and the overall uncertainty can be as great as ± 1 
percent. However, turbine meters used in leak detection are 
also used in custody-transfer. Consequently, these meters are 
proven periodically and highly accurate. 

16 Adequacy of Waterhammer Equations for Leak 
Detection 

Assuming the flow area is known precisely, the RSS TPE 
in the "measured" mass flux m is 

s-J(?),+(vO' 
Through linear interpolations using the initial steady-state 
pressures at the pipe ends (Section 9) and the density data 
uncertainties (Section 4), we estimate the uncertainties in den
sity to be 0.058 percent at the inlet and 0.052 percent at the 
outlet. Suppose that turbine meters are used for volumetric 
flow measurements and that the uncertainty for each meas
urement is ±0.02 percent. Using Eq. (28), the "measured" 
mass flux uncertainty is ±0.061 percent at the inlet and ±0.056 
percent at the outlet. The resulting RSS TPE for the net mass 
influx for steady flow based on "measurements" is ±0.083 
percent. 

The above uncertainty is the least possible value since no 
bias is included. If biases exist, then the TPE can be much 
greater. For example, if the turbine meters are not proved in 
the field, then the RSS TPE can be as large as ±1.4 percent. 

In the flow reduction example in section 9, we have R = 2 
and Ma,- = 0.002. From Fig. 10, U = 0.4 percent. For this 
example, which is typical of cross-country pipelines, there is 
a 0.317 percent (0.4 percent - 0.083 percent) loss of leak 
detectability during true steady-state. If the flow measurement 
uncertainty is kept at the nonrepeatability level through good 
meter proving practice, then it is the inaccuracy of the water-
hammer equations, not the uncertainties in property data and 
flow measurement, that limits the ability to detect small leaks. 
On the other hand, when the turbine meters are not proven, 
then the 0.4 percent inaccuracy of the waterhammer equations 
becomes insignificant as inaccuracy falls within the ±1.4 per
cent uncertainty level of volumetric flow measurement. 

17 Conclusions 
When waterhammer equations are used to monitor mass 

inventory changes in pipelines, the net mass influx error be
comes an issue. We demonstrate that this error is bounded by 
the mass imbalance error in the steady-state with maximum 
flow, irrespective of the severity of the transients. A simple 
method to determine this bound is presented. 
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With the available accuracy in flow property data and in 
flow-rate measurements, the waterhammer equations are not 
accurate enough for systems with high friction and high inlet 
Mach number. For a specified leak detection limit, Eqs. (26), 
(27), and Fig. 10 can be used, in conduction with flow-rate 
measurement uncertainties, to evaluate the adequacy of the 
waterhammer equations in such applications. 
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Experimental Results for the 
Rotordpamic Characteristics of 
Leakage Flows in Centrifugal 
Pumps 
In recent years, increasing attention has been given to fluid-structure interaction 
problems in turbomachines. The present research focuses on just one such fluid-
structure interaction problem, namely, the role played by fluid forces in determining 
the rotordynamic stability and characteristics of a centrifugal pump. The emphasis 
of this study is to investigate the contributions to the rotordynamic forces from the 
discharge-to-suction leakage flows between the front shroud of the rotating impeller 
and the stationary pump casing. An experiment was designed to measure the ro
tordynamic shroud forces due to simulated leakage flows for different parameters 
such as flow rate, shroud clearance, face-seal clearance and eccentricity. The data 
demonstrate substantial rotordynamic effects and a destabilizing tangential force 
for small positive whirl frequency ratios; this force decreased with increasing flow 
rate. The rotordynamic forces appear to be inversely proportional to the clearance 
and change significantly with the flow rate. Two sets of data taken at different 
eccentricities yielded quite similar nondimensional rotordynamic forces indicating 
that the experiments lie within the linear regime of eccentricity. 

1 Introduction 
In turbomachinery, the trend toward higher speeds and 

higher power densities has led to an increase in the number 
and variety of fluid-structure interaction problems in pumps, 
compressors, turbines and other machines. This occurs because 
the typical fluid forces scale like the square of the speed and 
thus become increasingly important relative to the structural 
strength. This becomes particularly acute in rocket engine 
turbopumps where demands to minimize the turbopump mass 
may also lead to reductions in the structural strength. Con
sequently designers and manufacturers are concerned with the 
fluid-induced rotordynamic forces on impellers in turboma
chines. Knowledge of the steady and unsteady forces and the 
associated rotordynamic coefficients is required to effectively 
model the rotordynamics of high speed turbomachines. 

2 Background 
Rotordynamic forces imposed on a centrifugal pump by the 

fluid flow through it were first measured by Domm and Hergt 
(1970), Hergt and Krieger (1969-70), Chamieh et al. (1985) 
and Jery et al. (1985). In the Rotor Force Test Facility (RFTF) 
at Caltech (Jery et al., 1985; Adkins et al., 1988; Franz et al., 
1989) known whirl motions over a full range of frequencies 
(subsynchronous, supersynchronous as well as reverse whirl) 
are superimposed on the normal motion of an impeller. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
April 21, 1992; revised manuscript received April 22, 1993. Associate Technical 
Editor: S. B. Zakem. 

The hydrodynamic force on a rotating shroud or impeller 
(see Fig. 1) which is whirling can be expressed in the stationary 
laboratory frame in linear form as: 

Flit) 
+ [A*] 

x*(t) 
y'(t) 

( i ) 

The first term on the right-hand side represents the radial 
force in the absence of whirl motion, so that F%x, F„y are the 
steady, time-averaged forces in a stationary frame which result 
from flow asymmetries in the volute or the inlet duct. These 

SHROUD ORBIT 

Fig. 1 Schematic of the fluid-induced radial forces acting on an impeller 
whirling in a circular orbit. F* and F; represent the instantaneous forces 
in the stationary laboratory frame. F* and Ff are the forces normal and 
tangential to the whirl orbit where f! is the whirl frequency. 
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steady radial forces are discussed in detail elsewhere (Iverson 
et al., 1960; Domm and Hergt, 1970; Chamieh, 1983; Chamieh 
et al., 1985; Adkins, 1986). The matrix [A*] is the rotordy-
namic matrix which operates on the instantaneous displace
ment [x*] of the rotor center. Note that [A *] will in general 
be a function not only of the mean flow conditions and pump 
geometry but also of the frequency of whirl, 0. If outside the 
linear range, it may also be a function of the amplitude of the 
whirl motion, e. At small, linear amplitudes [A *] should be 
independent of e and presented as a function of the whirl 
frequency ratio, Q/oi. In the case of a circular whirl orbit 
x* = ecos Qt, j '*=es in fl^. Then the forces normal and tan
gential to the imposed circular whirl orbit are related to the 
matrix elements as follows: 

Ft{t) = -(~A*xy + A*yx)e (2) 

The reader is referred to Jery et al. (1985) and Franz et al. 
(1989) for details. In the analysis which follow, the above 
equations will be expressed in nondimensional terms. If, in 
addition, [A] is to be rotationally invariant, then 

Axy — iyX = F, (3) 

The experimental investigation of Jery et al. (1985) and the 
fluid mechanical model of Adkins et al. (1988) for centrifugal 
pump impellers demonstrated that there are two sources for 
these fluid-induced forces. It was recognized that contributions 
to the rotordynamic forces could arise not only from azimu-
thally nonuniform pressures in the discharge flow acting on 
the impeller discharge area but also from similar nonuniform 
pressures acting on the exterior of the impeller front shroud 
as a result of the leakage flow passing between this shroud 
and the pump casing. The tentative conclusion was that the 
leakage flow contribution to the normal force was about 70 
percent of the total and the contribution to the tangential force 
was about 30 percent of the total. These substantial contri

butions of the leakage flow to rotordynamic forces motivated 
this study. 

There are several other indications which suggest the im
portance of leakage flows to the fluid-induced rotordynamic 
forces. It is striking that the total rotordynamic forces meas
ured by Bolleter et al. (1987) from Sulzer Brothers, Ltd., for 
a conventional centrifugal pump configuration are about twice 
the magnitude of those measured by Jery (1986) or Adkins 
(1986) at Caltech. Both test programs used a radial face seal 
to minimize the forces which would be developed by the wear-
ring seals. So the measured hydrodynamic forces are due to a 
combination of the impeller-volute and the impeller-shroud 
interaction. It now seems sensible to suggest that this difference 
is due to the fact that the clearance in Bolleter's leakage flow 
annulus is substantially smaller than that in the experiments 
of Jery (1986) and Adkins (1986). 

Subsequently, Childs (1989) adapted the bulk-flow model 
which was developed for the analysis of fluid-induced forces 
in seals to evaluate the rotordynamic forces due to these leakage 
flows. The magnitude and overall form of the model predic
tions are consistent with the experimental data. In particular, 
the model also predicts positive, rotordynamically destabilizing 
tangential forces over a range of positive whirl ratios. However, 
Childs' theory yielded some unusual results including peaks in 
the rotordynamic forces at particular positive whirl ratios. It 
is clear that a detailed comparison of model predictions with 
experimental measurement remains to be made and is one of 
the purposes of the present program. 

3 Leakage Flow Test Apparatus 
A detailed description of the test facility, can be found in 

many of the references (Chamieh, 1983; Adkins, 1986; Jery, 
1986; Arndt, 1988; Franz, 1989), so only a brief description 
will be given here. The experiments were conducted in the Rotor 
Force Test Facility (RFTF), which was constructed to study 
fluid induced forces on an impeller whirling around the ma
chine axis of rotation. The experimental objective was to im
pose well-controlled rotational and whirl motions on a very 
stiff impeller/shaft system and to measure directly the resulting 
force on the impeller. This is accomplished by an eccentric 

N o m e n c l a t u r e 

[A*] 
[A] 

C,c = 

F(t) 

F*(t),FUt) = 

FAt),Fy(t) 

p* p* 

^oxi^oy 

rotordynamic matrix 
rotordynamic matrix 
normalized by 
pirw2R2L 
rotordynamic damp
ing coefficients nor
malized by piruR2L 
hydrodynamic forces 
hydrodynamic forces 
normalized by 

lR2Le/R2 

lateral forces on the 
rotating shroud in 
the stationary labo
ratory frame 
lateral forces on 
the rotating shroud 
in the stationary 
laboratory frame 
normalized by 
piru2RlLe/R2 

steady hydrody
namic forces 
steady hydrody
namic forces nor
malized by pirw2R2L 

F*At),Ff«) = 

F„(t),Ft(t) = 

H = 

K,k = 

L = 

M,m 

Q = 
R = 

Re. = 

Re, = 

t = 

unsteady hydrody
namic forces 
unsteady hydro-
dynamic forces 
normalized by 
piroi2R2Le/R2 

shroud clearance be
tween rotor and cas
ing 
rotordynamic stiff
ness coefficients 
normalized by 
pir</R\L 
axial length of the 
shroud 
rotordynamic iner-
tial coefficients nor
malized by pirR2L 
volume flow rate 
shroud radius 
axial flow Reynolds 
number, 2HUs/v 
Reynolds number 
based on tip speed, 
aRl/v 
time 

5 = 

x*(t) = instantaneous dis
placement in the x 
direction normalized 
by the leakage inlet 
radius, R2 

y*(t) = instantaneous dis
placement in the y 
direction normalized 
by the leakage inlet 
radius, R2 

offset or distance 
between the center 
of the whirl orbit 
and the center of the 
stationary casing 
eccentricity or radius 
of the whirl motion 
dynamic viscosity of 
the fluid 
density of the fluid 
flow coefficient, 
Q/2*R\HUS 
radian frequency of 
rotor rotation 
radian frequency of 
whirl motion 

P = 

n = 
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Fig. 2 Layout of the leakage flow test apparatus for installation in the 
Rotor Force Test Facility (Zhuang, 1989) 

Fig. 3 Schematic of the whirling shroud where S is the center of the 
stationary casing, R is the center of the rotating shroud, IV is the center 
of the whirl orbit along which R travels, WR = i is the eccentricity and 
WS = & is the offset 

drive mechanism which superposes a circular orbit on the basic 
rotation. The shroud is mounted on a spindle attached to the 
rotating force balance (Jery et al., 1985; Franz et al., 1989), 
which measures the forces directly on the shroud. The exper
imental apparatus sketched in Fig. 2 was designed and con
structed to simulate the leakage flow along the shroud from 
the impeller discharge to the impeller inlet (Zhuang, 1989; 
Guinzburg et al., 1990). The clearance between the rotating 
shroud and the stationary casing can be varied by both axial 
and radial adjustment of the stationary casing. For the present 
experiment, the initial geometric configuration consists of a 
straight annular gap inclined at an angle of 45 deg to the axis 
of rotation. The schematic in Fig. 3 shows the clearance in the 
centered position when the centers of the shroud and the casing 
both coincide. In order to model losses in the flow, an ad
justable face seal was used (refer to Fig. 2). In the present 
experiment, the face seal clearance permits the pressure drop 
to be adjusted separately from the flowrate. 

The flow through the leakage path is generated by an aux
iliary pump and the selection of the flow rates through the 
leakage path was based on performance characteristics of a 
typical centrifugal pump. The shroud can be driven at speeds 
up to 3500 rpm and a circular whirl motion with a frequency 
up to 1800 rpm can be superimposed on the basic rotation.' 
The eccentric drive mechanism permits testing with the am
plitude of the whirl motion or eccentricity, e adjustable from 
0.000 cm to 0.152 cm. The distance from the center of the 
whirl orbit to the center of the casing, termed the fixed offset, 
8 is also variable. So concentric and nonconcentric circular 
whirl orbits could be investigated. However, the present ex
periments are confined to the case of zero offset. Further details 
of the experimental equipment can be found in Guinzburg 
(1992). 
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The results from these experiments will be presented non-
dimensionally by dividing the forces by pKo^RlLe/Rj. In most 
pumps L, the axial length of the leakage path and the impeller 
discharge width are comparable and hence, the dimensionless 
data from the leakage flow tests may be qualitatively compared 
with that from the impeller tests. 

4 Experimental Results for Rotordynamic Forces 
Typical experimental measurements of the dimensionless 

normal and tangential forces, Fn and F,, will be presented in 
this section. The fluid medium in which the experiments were 
conducted was water. The rotordynamic results from the force 
balance measurements were obtained for different rotating 
speeds of 500, 1000, 2000 rpm, different leakage flow rates 
(zero to 50 gpm), three different clearances, H, and two ec
centricities, e. Another parameter which has an effect on the 
results is the swirl velocity at the inlet to the leakage flow. The 
present paper will be confined to a presentation of the results 
for zero inlet swirl, since the effect of swirl is dealt with in 
another paper (Guinzburg et al., 1992). The range of rotational 
Reynolds numbers was 462xl03-1851xl03andthe range of 
axial flow Reynolds numbers was 2136-8546. While the ro
tational Reynolds numbers for the experimental flows are 
clearly in the developed turbulent regime, it is possible that 
the axial flow Reynolds numbers were too small to manifest 
the kind of resonances predicted by Childs. 

The components of the generalized hydrodynamic force ma
trix that result when the impeller whirls in an eccentric orbit 
of 0.0254 cm, at 1000 rpm, and a clearance of 0.140 cm are 
shown in Fig. 4. Note that the general form and magnitude 
of the data is very similar to that obtained for impellers by 
Jery (1986) and Adkins (1986) and to that from Childs' model 
in the absence of the "resonance." One of the most significant 
features of these results is the range of positive whirl frequency 
ratios within which the tangential force is positive and therefore 
potentially destabilizing rotordynamically. Note also that a 
positive normal force is directed outward and would tend to 
increase the displacement of the impeller. The parabolic shape 
of the normal force curve results from the added mass of the 
fluid. 

Since the data of Figs. 4 and 5 were obtained under con
ditions which were the same except for the magnitude of the 
eccentricity, e it is reassuring to note the similarity between 
the two sets of data. Evidently these experiments lie within the 
linear regime of small eccentricities (note that the assumption 
of linearity was implicit in Eq. (1)). Other experiments were 
performed for the same conditions as Figs. 4 and 5 except that 
the rotor speeds are 500 rpm and 2000 rpm with satisfactory 
agreement (Guinzburg, 1992). It is somewhat startling to find 
that the linear regime extends up to and beyond the point 
where the eccentricity is 60 percent of the clearance. 

In Figs. 4 and 5, the effect of flow rate on the normal force 
is clearer than its effect on the tangential force. Clearly the 
Bernoulli effect on the normal force increases with increasing 
flow at both positive and negative whirl frequency ratios. It 
would also appear that the positive tangential forces at small 
positive whirl frequency ratios are smallest at the highest flow 
rate and therefore increasing the flow is marginally stabilizing. 
From experiments performed with different clearances, the 
forces are roughly inversely proportional to the clearance 
(Guinzburg, 1992). For the same eccentricity and two different 
clearances, the smaller clearance generates larger perturbations 
in the flow which accentuates the acceleration in the fluid and 
increases the pressure differences. 

It is interesting to compare the magnitudes of the forces with 
previous results obtained for a real centrifugal impeller in the 
same facility. The data presented by Franz et al. (1989) for a 
Byron Jackson centrifugal pump were obtained with an eccen
tricity of 1.25 mm which is significantly larger than the present 
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value of 0.254 mm. Thus, it is appropriate to compare the 
"stiffnesses" F%/e and F*/e rather than the forces themselves. 
At zero whirl frequency ratio the present data for a clearance 
of 1.40 mm (or 4.24 mm), yields values of 2.8 KN/m (or 0.46 
KN/m) and 7.6 KN/m (or 1.88 KN/m) respectively compared 
to 6.8 KN/m and 2.28 KN/m for the data of Franz et al. (1989). 
Though the geometries of the leakage pathways are quite dif
ferent this still suggests that the contribution of the shroud 
leakage flow to the rotordynamic forces is substantial. 

The Reynolds number effect is investigated by examining 
the results of experiments which were identical except that the 
velocities (rotational, whirl and flowrate) were all increased or 
decreased by the same factor (Guinzburg, 1992). Hence, for 
example, the flow coefficients were identical. It was found that 
the coefficients do not change substantially as Reynolds num
ber Reu = wRl/v increases. In the earlier work of Zhuang (1989), 
the normal and tangential forces were seen to decrease slightly 
as the Reynolds number increased. Those experiments were 
performed for no flow conditions. The present finding is con
sistent with the measurements of Jery (1987) on a centrifugal 
pump which were not affected by the Reynolds number. 

5 Rotordynamic Coefficients 
Conventionally, rotordynamics represent the force matrix 

by subdividing into components which depend on the orbit 
position (x,y), the orbit velocity (x,y) and the orbit accel
eration (x,y). It is convenient for analytical purposes to eval
uate these components by fitting quadratics to the experimental 
data. Though the functional dependence of F„ on the whirl 
frequency ratio is not necessarily quadratic and that of Ft is 
not necessarily linear, it is nevertheless of value to the rotor-

dynamicists to fit the data of the figures from the previous 
section to the following expressions: 

«—i=H®- (8) 

where M, C, c, K, k are the dimensionless direct added mass 
(M), direct damping (C), cross-coupled damping (c), direct 
stiffness (K) and cross-coupled stiffness (k). The cross-coupled 
added mass (m) is omitted for simplicity, since a linear fit for 
F, is adequate. From a stability point of view, the tangential 
force is most interesting; a positive cross-coupled stiffness is 
destabilizing because it drives the forward orbital motion of 
the rotor. Positive direct damping and negative cross-coupled 
stiffness are stabilizing because they oppose orbital motion. 

6 Discussion of Results 
The dimensionless rotordynamic coefficients, which were 

obtained by curve fitting the present experimental data, are 
presented in graphical form in Fig. 6 for a wide range of 
conditions; the coefficients are plotted against the flow coef
ficient, 4>. Various effects such as speed, eccentricity and shroud 
clearance are shown together in Fig. 6 in order that the global 
effect on each coefficient with increasing leakage flow can be 
seen. A large negative stiffness results in a positive normal 
force which would tend to increase the radius of the orbital 
motion; increasing the leakage flow increases this force. On 
the other hand, a positive cross-coupled stiffness would result 
in the flow being destabilizing because it drives the forward 
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Fig. 7 Rotordynamic coefficients showing the effect of seal clearance 
as a function of flow coefficient for 1000 rpm and an eccentricity of 
0.118 cm 

orbital motion of the rotor so as to encourage whirl. The 
leakage flow is stabilizing in that the tangential force decreases 
with leakage flow. However, direct damping decreases slightly 
with flow, so the tangential force increases and the flow would 
therefore be less stabilizing. Below a flow coefficient of 0.7, 
direct damping is negative so the flow would encourage whirl. 
At higher flow rates, direct damping begins to increase and 
since this decreases the tangential force, the flow is stabilizing. 
However, these flow rates are much higher than realistic leak
age flow rates in centrifugal pumps. The effect of the coef
ficients relating to the normal force is as follows. As the flow 
increases, the cross-coupled damping decreases slightly and the 
added mass term increases, thus contributing to a larger normal 
force. In other words, inertial motion would discourage orbital 
motion of the impeller but drive the impeller in the direction 
of displacement. It is interesting to note that at higher flow 
rates, the trend of the added mass changes. 

In Fig. 6, the results for an eccentricity of 0.0254 cm and a 
clearance of 0.140 cm (obtained for a range of shaft speeds 
from 500 rpm to 2000 rpm) are seen to be independent of 
speed. Similar results were obtained with the same clearance 
but with a higher eccentricity of 0.118 cm (Guinzburg, 1992). 
This is simply another demonstration that the nondimension-
alization of the forces with respect to speed is appropriate and 
that the Reynolds number effects are small. 

The effect of eccentricity can be seen in Fig. 6 by examining 
the two sets of data (two different eccentricities) at 1000 rpm 
and a clearance of 0.140 cm. Even when the shroud clearance 
is of the same order of magnitude as the eccentricity, the results 
are still in the linear regime. Thus the magnitude of the ec
centricity has no effect on the rotordynamic coefficients pro
vided the latter are properly normalized. 

The effect of the clearance between the rotating shroud and 
the stationary casing on the rotordynamic coefficients will next 
be presented for a speed of 1000 rpm and three clearances: 
0.140, 0.212, and 0.424 cm. As the clearance is decreased, the 
stiffness and hence the normal force increases, which would 
drive the motion into a larger orbit. As the cross-coupled 
stiffness increases so does the tangential force and therefore 

the flow becomes more destabilizing. However, the direct 
damping acts in competition with k, because it increases as the 
clearance decreases. Rotordynamically speaking, the net effect 
is that a smaller force is generated with a larger clearance. The 
seal clearance also has an effect on the rotordynamic coeffi
cients and this effect is presented in Fig. 7. In practice such a 
change could occur as a result of wear. Indeed the adjustable 
seal ring was used (Fig. 2) to model such effects. Measurements 
were obtained for face seal clearances of 0.0254 cm, 0.051 cm 
and 0.1016 cm. The larger seal clearance exhibits a smaller 
normal force and the tangential force is larger, which therefore 
decreases the range of destabilization. In other words, the range 
of positive whirl frequency ratios for which the tangential force 
is positive is decreased. The direct stiffness and the direct 
damping change so as to decrease the normal force which is 
in competition with the effect of the cross-coupled damping. 
The tangential force increases as a result of the cross-coupled 
stiffness, but the effect of the direct damping is not clear. So 
it would seem that wear in the seal is rotordynamically de
stabilizing. 

7 Rotordynamic Stability 
A convenient measure of rotordynamic stability is the ratio 

of cross-coupled stiffness to direct damping k/C, known as 
the whirl ratio. This provides an estimate of the whirl frequency 
ratio at which the force would no longer be destabilizing. 
Indeed, if the tangential force data lay exactly on a straight 
line, it would be exactly that whirl frequency ratio which cor
responded to zero tangential force. Thus, reducing k/C im
proves the stability of the rotor system. As with the 
rotordynamic coefficients, the whirl ratios obtained from the 
present experiments are independent of rpm. Figure 8 also 
shows that as the clearance is decreased for a given flow rate, 
the whirl ratio increases. This is similar to the conclusion of 
Hawkins and Childs (1988) who showed that, in annular seals, 
decreasing the clearance increases the stability. The effect of 
increasing the seal clearance, illustrated in Fig. 9, is to decrease 
the whirl ratio. 
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of forward whirl for which the average tangential force is 
destabilizing, was found. This region decreased with the flow 
coefficient for the leakage flow. While the dependence on the 
shroud clearance is not simple, it would appear that the di-
mensionless rotordynamic forces are roughly inversely pro
portional to the clearance. The change with the discharge 
resistance was somewhat more complicated. Finally, the tests 
showed none of the "resonances" predicted by the bulk-flow 
model proposed by Childs (1989). 
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The whirl ratio from the results of Bolleter et al. (1989) gives 
surprisingly different results from the present research. For 
the total impeller, the whirl ratio is 1.4; for the seal the whirl 
ratio is 0.85 and for the difference of these contributions, the 
ratio is 2.26. The range for the results of the present experi
ments is smaller (-0.12 to 0.45). The discrepancies can be 
traced to differences in the cross-coupled stiffness and the 
direct damping, both of which are substantially larger in Bol
leter et al. (1989) than in the present experiments. 

8 Conclusions 
A review of the existing experimental and analytical results 

shows that the discharge-to-suction leakage flow in a centrif
ugal pump can contribute substantially to the fluid-induced 
rotordynamic forces for that turbomachine. This motivated 
the current experimental study of leakage flows between the 
shroud and the stationary casing of a centrifugal pump and 
their rotordynamic effects. Experimental results for simulated 
leakage flows of rather simple geometry are presented for 
different whirl frequencies, eccentricities, clearances and flow 
rates. As with previous results for impellers, the forces scaled 
with the square of the rotor speed. The functional dependence 
on whirl frequency to rotating frequency ratio (termed the 
whirl frequency ratio) is very similar to that measured in ex
periments and to that predicted in the theoretical work of 
Childs. 

Two sets of results taken at different eccentricities yield quite 
similar nondimensional rotordynamic forces indicating that 
the experiments lie within a linear regime. The dimensionless 
forces are found to be functions not only of the whirl frequency 
ratio but also of the flow rate and of the clearance. A region 
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Performance Prediction by Viscous 
Flow Analysis for Francis Turbine 
Runner 
Validation of a three-dimensional computational algorithm for viscous flow analysis 
has been conducted for two types of Francis turbine runner geometry, one low head 
and one high head, using experimental measurement. Assessment has been made 
for both qualitative features of flow behavior, as well as quantitative distribution 
of blade pressure and head loss. The influence of the grid size on the accuracy of 
the numerical solution is also discussed. Effort has been made to address some of 
the design issues, and to demonstrate that the present computational algorithm can 
make useful contributions to help improve the current design practices. 

Introduction 
Traditionally, the design and development of hydraulic tur

bine runners has been based mostly on slight modification of 
existing components and the performance assessment of the 
units has relied only on laboratory model testing. Computa
tional methods based on the potential or inviscid flow ap
proximation have been developed and applied to aid the design 
optimization of hydraulic turbine runners (Holmes and 
McNabb, 1982; Geoder et al., 1990); however, they cannot 
represent the complex behavior of truly turbulent viscous flows 
and cannot predict the associated energy losses. 

For the past several years, we have applied the viscous flow 
analysis to predict flow characteristics and energy losses in 
different nonrotating hydraulic turbine components and fa
vorable comparison between experimental information and 
numerical prediction have been obtained (Vu and Shyy, 1988, 
1990; Shyy and Vu, 1993). Recently, intensive validation work 
for Francis turbine runner has been performed and, as will be 
demonstrated in the following, good correlation with experi
mental data has been obtained. In the present paper, we report 
the work for two Francis runner geometries. The first vali
dation work is for a medium-low head Francis runner tested 
by the Swiss Federal Institute of Technology in Lausanne for 
the 1989 GAMM-Workshop. The second one is a comparative 
study of two high head Francis Runners which are designed 
and tested in our own hydraulic laboratory. Numerical pre
diction of flow velocity, pressure distributions and head loss 
will be compared against the experimental data. Also para
metric study such as the influence of grid size on the accuracy 
of the numerical result will be reported. Based on these studies, 
an assessement can be made regarding our current capability 
of using computational fluid dynamics (CFD) as an aid for 
design improvement. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
June 23,1992; revised manuscript received February 3,1993. Associate Technical 
Editor: N. A. Cumpsty. 

Numerical Algorithm and Boundary Conditions 
The viscous flow analysis is based on the Reynolds-averaged 

three-dimensional Navier-Stokes equations. The equations for 
the continuity and momentum of the incompressible fluid writ
ten relative to a rotating coordinate system are: 

V-q = 0 

q. Vq= —Vp+ V •(j'effVq)+f 
P 

where q is the velocity vector with three velocity components, 
veff is the effective viscosity, p the pressure and f the body 
forces vector including the Coriolis, centrifugal, and gravi
tational term: 

f = - 2 f l x q - 0 x f t x r + g 

fl, r,and g are, respectively, angular velocity of the rotating 
coordinate, local radius, and gravitational acceleration. With 
regard to the turbulence closure, the original k - e two equation 
turbulence model (Launder and Spalding, 1974) is adopted 
here. As demonstrated previously (Vu and Shyy, 1988, 1990), 
this turbulence model can yield satisfactory predictions for 
several nonrotating turbine components. Here its performance 
will be further tested for the runner. The computational flow 
domain of the Francis runner consists of a single inter-blade 
channel including a corresponding portion of the distributor 
housing at the inlet and a portion of the draft tube inlet cone 
at the outlet. A radial projection of the flow domain along 
with prescribed boundary conditions are illustrated in Fig. 1. 
Three types of boundary conditions are applied for the solid 
walls. In the rotating coordinate system, all the solid walls 
rotating with the runner, BCD.D'C and BCC'B', are consid
ered as non-rotating solid surfaces. Nonrotating solid walls 
such as AB, A'B', and C'E', which represent top and bottom 
of the distributor housing and the draft tube inlet, are con
sidered as rotating solid surfaces. Surface DE, which is an 
extension of the hub, is considered as a symmetry boundary 
with slip condition prescribed. The periodic boundary con-
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Fig. 1 Computational flow domain of a Francis turbine runner 

dition is applied to the surfaces ABB'A' and CDEE'C. At 
the inlet of the flow domain, surface AA', the velocity profiles, 
both in term of magnitude and direction, have to be specified. 
The flow direction is specified by Pitot measurement or by 
using the outlet flow profile of the previously computed flow 
field solution of the distributor (at upstream of the runner). 
The magnitude of the velocity vector at the inlet is calculated 
according to the specified total flow rate. The the exit, surface 
EE\ zero value of the first order derivatives along the stream-
wise direction is adopted for all the dependent variables, except 
for the static pressure. There is no need to specify the static 
pressure distribution in either inlet or outlet plane due to the 
merit of the staggered grid system used by our algorithm (Pa-
tankar, 1980; Shyy and Vu, 1991). This characteristic comes 
from the fact that in the present algorithm, the pressure cor
rection is iteratively computed according to the deviation of 
the mass flux balance within each computational cell. With 
the staggered grid, the mass flux across the outflow boundary 
is computed via velocity extrapolation, with a subsequent en
forcement of the global mass conservation (Shyy, 1985). This 
practice allows the pressure field to be computed without re
sorting to any artificial pressure boundary condition, a practice 
consistent with the mathematical characteristics of the fluid 
flow equations. The turbulence quantities at the inlet plane 
are not available from the measurement; they are specified 
according to the standard procedure, namely, the local equi
librium condition is utilized between the turbulent kinetic en
ergy and the rate of the turbulent energy dissipation. Besides 
the inlet, the outlet, and the periodic conditions, the wall func
tion is used in the wall region (Launder and Spalding, 1974). 
We have used no special treatment for either the leading or 
the trailing edge of the runner blade. The numerical procedure 
adopted for the computation is essentially a pressure-correction 
type of semi-implicit finite volume/finite difference formu
lation implemented in a general curvilinear coordinate system. 
The convection terms in the momentum equations are ap
proximated by the second-order upwind scheme (Shyy et al., 
1992). The pressure and all the second-order derivative terms 
are discretized by the second-order central difference schemes. 
Details of the numerical algorithm and solution procedures 
are explained in (Braaten and Shyy, 1985; Shyy and Vu, 1991; 
Shyy, 1994) and are not repeated here. 

Application to the Gamm Francis Runner 
The Francis runner geometry of the GAMM-Workshop, held 

in September, 1989 at the Swiss Federal Institute of Technology 
(EPFL) in Lausanne, is shown in Fig. 2. It is a medium-low 
head 13 blade runner with a throat diameter of 0.4 m. A total 
of 28 pressure transducers are flush mounted to the blade 
surfaces, along three different streamlines. The experimental 
data, which are provided by the GAMM-Workshop organizer, 
were taken at the optimum operating conditions of the runner 
(Avellan et al., 1990). The angular velocity is 52.35 rad/s. The 
flow rate is 0.372 m3/s (measured by the Venturi) a 25.5 deg 
wicket gate opening. The water density is specified at 1000 kg/ 

Fig. 2 Geometry of the GAMM Francis runner 

Table 1 Effect of grid size on the numerical result accuracy 

Grid 
size 

7 x 1 5 x 4 5 
7 x 1 9 x 5 5 
9 x 2 1 x 5 5 
11x21x75 
15x21x75 

Head 
Loss 
(%) 
2.9 
1.1 
0.9 
0.4 
0.3 

Torque 
(Nm) 

423.0 
433.5 
438.7 
441.5 
445.5 

CPU 
time 
(hr) 

2 
5 
8 
12 
20 

Remarks 

Grid I 
Grid II 
Grid III 
Grid IV 
Grid V 

m3 and the water viscosity is assumed to be 1.31 Pascal-s. The 
corresponding Reynolds number, based on the throat diameter, 
the throat axial velocity and the dynamic viscosity, is equal to 
1.3 x 106. The velocity profile at the runner inlet, assumed to 
be axisymmetrical, is specified by the Pitot measurement. The 
flow rate, calculated from the runner inlet Pitot measurement, 
is 6 percent lower than the Venturi's flow rate. But given the 
low level of precision of Pitot's measurement, we use the Ven
turis flow rate for subsequent flow analyses. 

Parametric study has been performed for different impor
tant geometry and flow parameters, such as grid size, grid 
concentration, flow rate, flow inlet angle, etc. The grid size 
greatly influences the accuracy of the numerical result and the 
CPU time. A comparative study on the effect of the grid size, 
which varies from Grid I, 7x15x45 nodes, to Grid V, 
15 X 21 x 75 nodes, is presented in Table 1. The required CPU 
time varies approximatively from 1 hour for Grid I to 20 hours 
for Grid V on a Silicon Graphics work station with a computing 
power of 6 Mflops. Although we observe that even Grid I 
could predict relatively well the flow behavior and the blade 
pressure distribution, it overpredicts the runner head loss by 
a large margin compared to the solution on Grid V. The head 
loss is calculated by comparing the predicted energy loss of 
the runner flow passage and the useful energy required for the 
predicted torque for a given angular velocity and a given flow 
rate. The predicted runner head loss should always be smaller 
than the actual head loss, because we assume a perfect axi
symmetrical flow condition at the inlet. An uneven flow dis
tribution around the runner due to imperfect casing design 
and the downstream effect of the wicket gates should con
tribute more head loss to the runner. The grid size of 
75x21 x 11, Grid V, is found to be a good compromise in 
term of the accuracy and CPU time requirement. The following 
numerical results are calculated with this grid size. 

Figure 3 represents the distribution of the blade pressure 
coefficient Cp at three different streamline locations, near the 
crown (section 2), at the blade centerline (section 9) and near 
the band (section 15). The multiple symbols at the same lo
cation indicate the experimental error observed in the course 
of measurement. The numerical result agrees quite well with 
experimental data. The low pressure zone at the blade leading 
edge, near the runner band (section 15), is well predicted. The 
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Fig. 4 Velocity field near blade surfaces
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large variation of the static pressure computed at that location
is consistent with the measurement. We have observed that
this feature is more accentuated with finer grid solution. Figure
4 illustrates a 3-D view of the velocity fields at the pressure
and suction sides of the blade. At the pressure side, with the
stagnation occurring near the leading edge, the flow is pushed
toward the runner band. Whereas at the suction side, the flow
is highly accelerated. Figure 5 shows an excellent agreement
between prediction and measurement for the velocity profile
at the runner exit. Both the axial and tangential components
follow precisely all the variation of the experimental meas
urement. The comparison for the radial component with the
experimental data is not possible because this information is
not available.

!lulllle!" F447

llUlIlle!" F448

Application to High Head Francis Runners
Figure 6 illustrates two high head Francis runner geometries,

F447 and F448. Both runners have 15 blades and have the
same throat diameter of 0.3048 m. The two runners have sim
ilar geometric characteristics and they were both tested in the
laboratory with the same assembly. The uncertainty of meas
ured efficiency of the whole turbine assembly is ± 0.25 percent.
We do not have the measurement of absolute performance of
individual component, but the relative performance between
the two runner designs can be assessed by testing them in the
same assembly. At the best efficiency operating point, the
runner F448 is found to be 0.5 percent more efficient than
F447. Flow analyses are performed for the two runners at their
optimal operating conditions. For F447, the gate opening is
16 degrees, the flowrate is 0.197 m 3/sec and the angular speed
is 878.88 rpm. For F448, the gate opening is 18 degrees, the
flow rate is .222 m3Is and the angular speed is 899.41 rpm.
Since their operating conditions are quite similar, except for

Fig. 6 Geometries of two high head Francis runners

the wicket gate opening, we can reasonably attribute the dif
ference in efficiency of 0.5 percent between the two runners
to the difference in head loss within the flow passage of the
two runners.

Three types of grid size, with 13 x 25 x 85, 11 X 21 x 85 and
9 x 21 x 75 nodes, are used to perform the flow analysis. The
runner torques are well predicted by all three grid sizes to
within 1.5 percent accuracy (see Table 2). The flow charac
teristics are also found to be similar for both runner geometries.
Figure 7(a) shows, in radial projection, the typical velocity
field at the pressure side of the runner F447 , whereas Figs.
7(b) and 7(c) show the velocity fields, in the blade to blade
projection, near the crown and the band of the same runner.
A local recirculation zone is observed at the region near the
crown at the exit of both runners. This recirculation zone
creates high fluctuation and prevents us from performing the
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Table 2 Effect of grid size on the calculated torque (Nm) Table 3 Effect of grid size on the calculated head loss 
Grid 
size 

Measurement 
9 x 2 1 x 7 5 
11x21x85 
13x25x85 

Runner 
F447 

721.1 
736.9 
732.1 
727.2 

Runner 
F448 

800.6 
812.4 
807.7 
803.7 

Grid 
size 

Measurement 
9 x 2 1 x 7 5 
11x21x85 
13x25x85 

Runner 
F447 

0.5% higher 
4 .1% 
3.9% 
4.2% 

Runner 
F448 

3.8% 
3.6% 
3.7% 

A 
Head loss 

0.5% 
0.3% 
0.3% 
0.5% 

llfllllllll 

' 'l Mr 
7.a Radial projection. Pressure side 

7.C Blade to blade 
Near band 

Fig. 7 Velocity distribution of the F447 at the best efficiency point 

8.C Blade to blade 
Mear band 

Fig. 8 Velocity distribution of the F447 with 1° higher inlet flow angle 
from the best efficiency point 

Pitot measurement in this region. It is noted that the flow 
behavior in a high head Francis runner is very sensitive to the 
flow inlet condition; a small change in the flow inlet angle of 
1 degree from the best efficiency point could produce large 
recirculation zones near the leading edge of the blade as seen 
in Fig. 8(a). Figures 8(6)and 8(c) represent the blade to blade 
projection of the velocity fields near the crown and band region 
of F447 for this particular operating condition. Unlike the best 
efficiency case of F447 (Fig. 7), a recirculation zone is observed 
here. Consequently, the runner head loss jumps up to 5.3 
percent instead of 4.2 percent at the best efficiency point. Table 
3 shows the head losses calculated for the two runners with 
the three grid sizes. It has been found that the viscous energy 
loss in a high head Franics (about 4 percent) is much higher, 
compared to the one of low head Francis (about 0.4 percent). 
In the present experimental test rig, it is difficult to determine 
the absolute value of the viscous loss in the runner, only the 
relative performance between the two designs can be evaluated. 
It is this relative performance of the two runners that can be 
validated between prediction and measurement. Based on the 
result presented, it is concluded that the direction of the design 
improvement can be well captured by the flow analysis. The 
runner F448 is found to perform better by all three grid sizes. 

Concluding Remarks 
We have presented an assessment of a viscous flow com

putational algorithm for two different runner geometries, a 
low head and a high head Francis turbine runner. The predicted 
flow characteristics, blade pressure distribution and runner 
head loss have all been compared well with the experimental 
data. It has been demonstrated that the qualitative flow char
acteristics and the quantitative blade pressure distribution can 
be predicted correctly, even with a relative small grid size. 
Similar to the experience gained from the computation of the 
nonrotating components (Vu and Shyy, 1988, 1990; Shyy and 
Vu, 1993), the originally proposed k — e two equation model 
is capable of yielding satisfactory prediction. What has been 
attempted here is an engineering assessment of the runner 
performance, based on a pragmatic turbulence closure model, 
state-of-the-art numerical algorithm, and compared with ac

tual measurements. In view of the substantial degrees of un
certainties that any engineering turbulence models have right 
now, unless a direct simulation can be made, which is un
practical, a selective use of CFD is desirable. It is our opinion 
that depending on the purpose of the computation, there can 
be a range of approaches and grid sizes that will make useful 
contribution to the current engineering practices. Although 
not all the detail of the flow field can be accurately captured 
by the present grid resolution, the overall comparison between 
measurement and prediction, including some of the secondary 
flow features, looks favorable. Furthermore, the key param
eters related to the runner performance can be assessed. A 
concerted effort has been made in this regard to address some 
of the design issues that have not been adequately covered so 
far, and to find out what and how a design engineer can 
improve a given design with reasonable computing resources. 
In the present work, we have inspected not only the pressure 
distribution, but also velocity profiles and total pressure losses. 
The latter aspect can be predicted only by a viscous flow al
gorithm; the solution of the inviscid flow based on the Euler 
equations cannot supply the necessary information. Our find
ings have demonstrated that the present approach is capable 
of yielding quite useful information of the runner performance. 
The present approach has been found reliable enough to be 
used to optimize the actual design of Francis runner geometry. 
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An Investigation of Nucleating 
Flows of Stream in a Cascade of 
Turbine Blading—Wake Traverses 
During the course of expansion in turbines, steam first supercools and then nucleates 
to become a two-phase mixture consisting of a very large number of minute droplets 
suspended in the parent vapor. To reproduce turbine two-phase flow conditions 
realistically requires a supply of supercooled vapor, which can be achieved under 
blow-down conditions. This paper is one of a set describing the equipment which 
has been constructed and the first family of results obtained on a short duration 
cascade tunnel working on the blow-down principle. The arrangements for traversing 
downstream of a cascade of nozzle blades and the results obtained are described in 
the paper. 

Introduction 
This paper is one of a set describing the equipment and the 

first set of results obtained on an experimental facility con
structed to study the problems associated with the flow of 
nucleating and wet steam in turbines. Turbine stages operating 
on nucleating and wet steam have a lower thermodynamic 
efficiency than those in which the fluid is superheated. The 
difference is loosely attributed to wetness losses but despite 
the dominant role played by steam turbines in the generation 
of electrical power, there is considerable uncertainty in the 
literature about the detailed mechanisms which give rise to 
these losses. The reason is partly the difficulty of reproducing 
turbine two-phase flow conditions in steady state tunnels. 

At low and moderate pressures the supercooling associated 
with the first reversion of steam is substantial. Consequently 
in studies of condensation in steady state tunnels the zones of 
rapid condensation occur in the supersonic parts of the flow. 
This is in contrast to conditions in turbines where because 
moving blades extract energy from the flow, steam can super
cool sufficiently to nucleate without attaining the speed of 
sound. Thus steady-state tunnels cannot reproduce turbine wet 
steam conditions realistically. For examples, the release of 
latent heat associated with condensation produces opposite 
effects in sub-sonic and supersonic flows. 

To produce turbine conditions realistically requires a supply 
of supercooled steam. Following an examination of potential 
possibilities it was shown in a feasibility study that such a 
supply can be produced under blow down conditions (Bakhtar 
and Heaton, 1986). Short duration tunnels are widely used in 
aerodynamic studies (Jones et al., 1993) and the technique can 
be adapted for the investigation of wet steam flows. As the 
next step in the treatment of the problem a short duration 
cascade tunnel working on this principle has been constructed. 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
June 30, 1992; revised manuscript received April 28, 1993. Associate Technical 
Editor: O. C. Owens. 

The aim of evaluating the capabilities of the equipment has 
been combined with the investigation of flow in a cascade of 
typical nozzle blading. The main features of the equipment, 
the surface pressure measurements, typical optical observa
tions and droplet measurements have already been described. 
(Bakhtar et al., 1991, 1992, and 1993). The arrangements for 
traversing downstream of the cascade and the results obtained 
are reported in this paper. 

Main Features of the Equipment and Principle of 
Operation 

The general features of the equipment are illustrated dia-
grammatically in Fig. 1. The steam receiver is a tank of 28 m3 

capacity. Valve (1) is a quick acting valve with a typical opening 
time of 70 ms and releases the flow to the test section. Valve 
(2) is a butterfly valve used for setting the downstream pressure. 
The spent steam is discharged to a condenser with a condensing 
surface area of 60 m2. The test section is essentially a steel 
fabrication which holds two cover plates 76 mm apart. The 
blades forming the cascade are mounted on circular supporting 
plates which fit into the test section. The opening of the quick-

Test Section 

o 

Steam Supply 
I 

Fig. 1 General arrangement 
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Fig. 2 Flow passage through cascade 

acting valve is followed by transients which in the present 
equipment decay in 700 ms. A quasi-steady flow is then es
tablished in the test section which can be studied. The drop in 
the stagnation pressure was 0.5 percent per second and the run 
time of the equipment was normally regarded as 0.5 s. 

To generate supercooled steam the receiver is first charged 
with saturated steam and then vented to the condenser. This 
has the effect of expanding the steam remaining in the tank 
to predetermined degrees of supercooling without the penalty 
of giving it kinetic energy. 

To take pressure measurements during the short run times 
each tapping point was connected by a hypodermic tube to a 
separate pressure transducer. These were piezo-resistive in
struments each built integral with its own amplifier. To prevent 
the formation of vapor bubbles and to protect the transducer 
elements from exposure to steam, the connecting lines were 
kept full of oil and purged when necessary. To achieve this 
the transducers were mounted each in a separate cell in special 
manifold blocks and the cells fitted with individual purge lines. 
The use of oil-filled lines had the further advantage of reducing 
the time response of the transducers to approximately 1 ms. 
The transducers were calibrated in situ through the data ac
quisition system and the measurements were accurate to within 
± .01 bar. 

Recording of data was controlled by a microcomputer. For 
this purpose the signals from the instruments after individual 
processing were connected each to a separate sample and hold 
module. To take a set of readings all the sample and hold units 
were signalled from the processor simultaneously and subse
quently scanned. The analogue signals were converted to digital 
form and stored in the computer memory. Having completed 
a set of readings the sample and hold units were signalled once 
more and the procedure repeated. The time taken to record 
one signal was 25 /*s. Thus with a relatively small number of 
signals recorded at each position when traversing, a very large 
number of readings could be taken as the probe was driven 
across the flow passage. 

A diagrammatic view illustrating the flow passage through 
the cascade is given in Fig. 2. The cascade consisted of six 
blades and two half profiles machined in the spacer blocks 
forming seven passages. The central blades were mounted as 
a separate interchangeable unit. To carry out the LDA meas
urements, the central unit used was fitted with optical windows. 

To traverse the flow downstream of the cascade one of the 
blade support plates was replaced with one machined with a 
slot to allow for probe access. The position of the slot and the 
traversing plane relative to the blades is given in Fig. 2. The 
probe was mounted in a holder supported by a traversing 
mechanism and driven across the passage by a pneumatic cy-

Fig. 3 Probe 

linder. To provide for sealing, the whole assembly was mounted 
in a steel chamber bolted to the test section cover. 

Arrangements for Traversing 
An important factor in the design of the probe was the need 

to minimize the blockage of the flow. Based on the experience 
described by Cox (1980) an isometric view of the arrangement 
adopted is shown in Fig. 3. This was a three holed yaw type 
instrument with a separate static tube. To keep the disturbance 
of the flow to a minimum the outer tubes of the yawmeter 
which were chamfered at 45 deg in opposite directions, were 
placed above and below the total pressure tube. Initially the 
probe was constructed from tubes of 0.255mm bore and with
out a static tube. Considerable problems were experienced with 
blockage of the holes. Consequently the tube size was increased 
to one of 0.51mm bore and 0.75mm outside diameter. With 
this arrangement the probe width in the flow direction was 
0.75mm. In addition the data logging system available had an 
8 bit accuracy which proved insufficient to allow the static 
pressures to be deduced from the readings of the yawmeter 
satisfactorily. It was, therefore, decided to add a static pressure 
tube to the probe. This tube had a 20° cone at its tip and was 
of the same gauge as the yawmeter tubes. To sense the static 
pressure only one tapping point was drilled into the tube 7.34 
mm from its tip and positioned vertically above its axis and 
in line with the tip of the total pressure tube. With the cascade 
flow two-dimensional the variations of static pressure in the 
spanwise direction were negligible and the static tube was taken 
to indicate the static pressure at probe tip position accurately. 

To record the pressures, as already stated each tapping point 
was connected to its own transducer, mounted in a cell via oil 
filled capillary tubing. To minimize the disturbance of the 
joints during the probe travel, the transducers used in con
junction with the probe were mounted in a special manifold, 
attached to the traversing mechanism carriage via its guidance 
bar. Thus the whole assembly formed a unit and the transducer 
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Fig. 4 Calibration nomenclature 

manifold moved with the probe. In addition, to provide for 
increased accuracy and to allow for cross checking of results 
some differential pressure transducers were also mounted in 
the manifold and used to measure differences between strategic 
pressures. 

In the absence of any other supply of supercooled steam, 
to calibrate the probe it was necessary to use the test section, 
For this purpose a special slotted nozzle fitting in the test 
section in place of the cascade, was designed and constructed. 

With the inclusion of the static tube the calibration of the 
instrument for the measurement of all flow characteristics in 
superheated steam and for the measurement of flow angle and 
static pressure in wet steam was straightforward. The proce
dure used was essentially that described by Cox (1980). But 
the measurement of total pressure in wet steam in supersonic 
flow presented a problem because of the standing shock wave 
in front of the tube. 

The flow configuration illustrating the position of the total 
pressure tube relative to the slotted nozzle is shown in Fig. 4. 
The station upstream of the nozzle is designated as (1), the 
position in the downstream plane of the nozzle and upstream 
of the probe is designated as (2) while the reading of the total 
pressure tube is given the suffix TD. 

To calibrate the tube it is necessary to establish the relation 
between the tube reading PTD, the static pressure P2 and the 
total pressure at station (2), P02- In the absence of phase change 
the total pressure at (2) can be taken to be the same as the 
that at (1) which can be measured. But if the fluid nucleates 
in the passage, the flow in the core of the nozzle is no longer 
isentropic. There will be irreversible internal heat transfer and 
loss of total pressure between stations (1) and (2). Under these 
circumstances, the determination of the total pressure at station 
(2) presented a problem. Computer programs predicting paths 
of nucleating and two phase flows of steam have been available 
to the authors from earlier studies (Bakhtar and Zidi, 1990 
and Bakhtar and So, 1991). The increase of entropy and as
sociate loss of total pressure experienced by the fluid can be 
obtained directly from the solutions. A series of solutions for 
typical conditions was carried out. In the notation of Fig. 4 
the average of calculated losses of total pressure expressed as 
a fraction of the upstream total pressure (P0i ~ PinVPoi w a s 

3 percent. This was adopted as the loss experienced by the flow 
between stations (1) and (2). 

In all the measurements where the fluid had nucleated up
stream of station (2), Po2 was taken as 0.97 P0l and the resulting 
data is plotted as a calibration curve against 1 - Ps/PTD in 
Fig. 5. As in the case of the superheated tests the measurements 
at flow angles of + 10,0, and - 10 degrees relative to the probe 
fell on the same graph. It will be seen that for values of 1 — 
PS/PTD less than 0.4 corresponding with subsonic flows, the 
total pressure tube reads the total pressure PQ2 accurately. But 
above this range as the flow exceeds the sonic velocity and as 
shown in Fig. 4, a standing shock wave will develop in front 
of the probe causing a further loss of total pressure between 
station (2) and the probe. Thus in supersonic flows the tube 
reading needs correction. 

PQ2 
PTD 

•+, 
» **"" • 
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1.0 

0.8 
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0.4 

0.2 

0.0 
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

1--ES-
PTD 

Fig. 5 Calibration curve in nucleating steam (uncertainty in measured 
pressures ±.01 bar) 

A further set of specimen calculations was also carried out 
to estimate the loss of total pressure experienced by the fluid 
between station (2) and the total pressure tube. For this purpose 
it was assumed that when wet steam encounters a standing 
shock wave, the discontinuity affects only the vapor phase 
initially and the droplets pass through the front unaffected. 
There is then a relaxation as the droplets adjust to the new 
conditions in the vapor surrounding them. The loss of total 
pressure will include two components: one the loss associated 
with flow through the shock wave and a further loss resulting 
from the thermal relaxation. The calculated differences be
tween PQ2 and PTD were lower than those indicated in Fig. 5. 
It was therefore decided to adopt the calibration graph shown 
in this figure but to regard it as the upper bound correction 
for the error. It will be recalled that the probe had also been 
calibrated in superheated steam. Under these conditions there 
was no loss of total pressure due to phase change. The total 
pressures at stations (1) and (2) were equal and in supersonic 
flow the loss of total pressure between station (2) and the tube 
was solely due to the standing shock wave and lower than the 
values indicated in Fig. 5. It was thus argued that if the wet 
measurements were interpreted by using the superheated cal
ibration curve the error would be underestimated. Thus the 
superheated calibration curve could be used for estimating the 
lower bound case of the correction to the readings and both 
sets of calibration curves have been used in the interpretation 
of the measurements. 

To investigate the feasibility of using LDA in wet steam and 
at the same time to provide some comparison with velocity 
traverses two sets of measurements were carried out. These 
were at the same plane downstream of the cascade as the flow 
traverses and at corresponding superheated and nucleating 
flows and were performed without seeding the flow. 

The L-D anemometer utilized a lOmW Helium-Neon laser 
operating in forward scatter. Particle transits through the LDA 
measurement volume were processed by a Burst Spectrum Ana
lyzer. The characteristics of the instrument permitted meas
urements to be taken within the short tunnel run times but the 
observations could be carried out only at one location in each 
run. To obtain the velocity distribution across the passage, the 
instrument was repositioned and the measurements repeated. 

Experimental Results 
To check the time response of the data acquisition system 

a number of preliminary measurements were carried out in 
which the probe was fixed in position and the readings were 
compared with measurements in which the probe was moving 
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Table 1 Summary of experimental results. 
(Uncertainty in measured pressures ± .01 bar, in temperatures 

± 1 K in measured angles ± 0.5 degree.) 

Test 
No. 

1* 
21" 
3f 

4 t • 

5* 
6* 

7* 
8f 

9f 

10f 

Po, 
bar 

1.68 
1.67 
1.67 
1.67 

1.73 
1.69 

1.68 
1.75 

1.68 

1.68 

To, 
K 

417 
416 
416 
414 

380 
378 

379 
381 

385 

385 

P*2 
bar 

Po, 
Psi 

Superheated tests 

1.03 
0.76 
0.84 
0.79 

Nucleating 

1.02 
0.84 

1.09 
0.86 

0.73 

0.84 

1.63 
2.20 . 
1.99 
2.11 

tests 

1.70 
2.01 

1.54 
2.04 

2.30 

2.00 

Outlet 
Angle 

Degrees 

73.4 
74.3 
74.5 
74.5 

71.4 
72.0 

69.8 
72.8 

70.5 

71.1 

Efficiency 

% 

94.4 
94.2 
95.1 
94.7 

87.4 
90.8* 
89.7 + 

87.3 
91* 

90.5 + 

91.2* 
90.4 + 

92.8* 
91.4 + 

Method 1. 
+Method 2. 
'Subsonic outlet. 
Supersonic outlet. 

and no differences were observed. A further set of comparisons 
was also carried out between the measurements of the pressures 
read directly and those inferred by using differential pressure 
transducers. The resulting readings fell identically on the same 
graph. Measurements were then carried out for flow conditions 
listed in Table 1. 

Typical measured variations of downstream static and total 
pressures across the passage for a case of superheated steam 
flow in the cascade with subsonic outlet are given in Fig. 6(a). 
A sketch showing the traversing plane relative to the blades is 
given as an inset to the figure. The values of total pressure as 
measured at a fixed location upstream of the cascade concur
rently with the other measurements are also plotted. The dif
ference between the upstream and downstream total pressures 
represents the losses incurred by the flow. The effect of the 
wakes on the flow is clearly evident. It can also be seen that 
in the space between the wakes the total pressure recovers its 
upstream value indicating that in this part of the flow the 
expansion has been isentropic. Similar measurements for a 
typical case of superheated steam flow with supersonic outlet 
are plotted in Fig. 6(b). Between the wakes the downstream 
total pressure does not recover the inlet value. This is due to 
the losses resulting from the trailing edge shock waves. 

Corresponding typical measurements taken with steam su
percooled at inlet for cases with subsonic and supersonic outlets 
are plotted in Figs. 7(a) and 1(b), respectively. By comparing 
the results of superheated and supercooled tests with subsonic 
outlet given in Figs. 6(a) and 7(a) it will be seen that the features 
are similar except for the differences between inlet and down
stream total pressures. In the superheated test the core of the 
flow is isentropic and there is no loss of total pressure suffered 
by the fluid during the expansion. In contrast when the fluid 
is supercooled at inlet, it will nucleate in the course of expan
sion. This process is accompanied by irreversible internal heat 
transfer which is experienced by the flow as a loss. 

The comparison between the results for flows with super
sonic outlet given as Figs. 6(b) and 7(b) is similar except for 
the presence of trailing edge shock waves. In both tests the 
downstream traverses indicate a loss of total pressure between 
the wakes. In the case of the superheated test shown in Fig. 
6(b), the loss is attributed to the effect of trailing edge shock 
waves. The measurements plotted in Fig. 7(b) show a larger 
loss in similar positions for the nucleating test. Only part of 
this loss is due to shock waves, the reminder is the nucleation 
loss suffered by the flow. 
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Fig. 6 Traverse results in superheated steam (uncertainty in measured 
distances ± 1.0mm, in pressures ±.01 bar) 

Analysis of Results 
From the recorded observations determination of the down

stream total pressure and flow angle was straightforward. The 
procedure used for the calculation of flow velocity and effi-
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Fig. 7 Traverse results in nucleating steam (uncertainty in measured 
distances ± 1.0mm, in pressures ±.01 bar) 

ciency is given in the Appendix. The method of analysis was 
applied to the measurements listed in Table 1. The efficiencies 
and flow angles quoted are mass mean values calculated over 
one pitch. 

It will be recalled that the determination of total pressure 
is supersonic wet flows from the probe pressure reading was 
subject to some uncertainty. For this reason the analysis of 
nucleating flows with supersonic outlet was carried out using 
two separate calibration curves. The first was that shown in 
Fig. 5 in which the thermodynamic losses during calibration 
were estimated theoretically. The second was the superheated 
calibration curve. Both sets of results have been presented. In 
each case the lower of the two efficiencies resulted from the 
use of superheated calibration curve. 

Tests numbers 1 -4 are superheated tests in which the pressure 
ratios P0i/Ps2 range from 2.20 to 1.63. This may be compared 
with the critical pressure ratio of 1.85 for dry steam. The 
efficiencies of the expansions are similar for all these cases. It 
is slightly higher for test 3 but the difference is comparable 
with the experimental error. It may thus be concluded that the 
superheated tests have an average efficiency of 94-95 percent. 

Tests 5-8 are supercooled tests of which the outlets for tests 
numbers 6 and 8 are supersonic while those of tests 5 and 7 
are subsonic. As already discussed there was some uncertainty 
in the calculation of efficiencies of the tests with supersonic 
outlet. The calculations were carried out using the two methods 
and yielded a gross average of approximately 90-91 percent 
for the two tests. Thus in these cases the efficiency is approx-

2 4 -
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3 1M
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I 
velocity m/s 

81.8 736.2 

Fig. 8 Typical distribution of velocity counts by LD Anemometer (un
certainty in individual measurements ±1 percent, uncertainty in fre
quency distribution ±1 percent) 

imately 4 percent lower than that of the corresponding super
heated tests. In contrast the average of the efficiencies of the 
subsonic tests is 87.3 percent which is 7 percent less than that 
of the superheated tests. 

Theoretical solutions predict the thermodynamic component 
of the wetness loss to be about 5 percent which is similar to 
the difference between the measured efficiencies of supersonic 
superheated and nucleating tests. Thus the aerodynamic losses 
in the supersonic supercooled and superheated tests are very 
similar. In contrast in tests with sub-sonic outlet approximately 
3 percent of the additional loss must be attributed to aero
dynamic causes. 

Experimental Accuracy 
The distance travelled by the probe was measured by a dis

placement transducer which had an accuracy of ± 1mm. The 
inlet stagnation temperature of steam has been measured to 
within ± IK. All the other quantities have been derived from 
pressure measurements which have been to an accuracy of 
±0.01 bar. The estimated uncertainties in the inferred veloc
ities and efficiencies are ±0.5 and ± 1 percent, respectively in 
all the tests except those with supersonic wet steam outlets in 
which the corresponding uncertainties are ±0.75 and ±1.5 
percent, respectively. The deduced flow angles are within ± 1 
degree. It must however be said that the quoted uncertainties 
refer to individual data points. As the overall efficiencies quoted 
are based on the average of a large number of readings they 
must involve smaller uncertainties. Mutual consistency of the 
results and comparisons with the results of air tests on similar 
profiles suggest an uncertainty of ± 0.6 percent in the measured 
efficiencies. 

Laser-Doppler Anemometry 
A typical example of the data resulting from a measurement 

in wet stream is shown in Fig. 8. The distributions generally 
showed two peaks suggesting the presence of two groups of 
particles in the flow. It was reasoned that the higher velocities 
could be attributed to the smaller nucleated droplets which 
moved with the flow. Thus for the purposes of comparison 
with the traversed data the higher velocities were adopted. It 
is thought that the second group are droplets formed by con
densation on foreign particles present in the steam. In each 
test an attempt was made to clear the steam of these impurities 
through a preliminary expansion and a pause for the droplets 
to settle. But as seen from the results some particles still remain 
in the vapor. Their presence is a major complicating factor in 
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the measurement of droplet sizes by light scattering or extinc
tion. 

It will be recalled that when carrying out LDA the meas
urements could be taken at only one location in each run. To 
obtain the velocity distribution across the passage the meas
urements had to be carried out over a number of runs but it 
was not possible to repeat the conditions of the tests exactly. 
To carry out comparisons between these measurements and 
traversed data, they were normalized. For each set of obser
vations the procedure was carried out in two steps. In the first 
stage average inlet and overall pressure ratios for the set of 
LDA results were calculated. The results differing substantially 
from the average were excluded and the remainder of the results 
were normalized to the average conditions. A set of velocity 
traverses corresponding closely to the average of the LDA test 
was then identified. The second adjustment consisted of nor
malizing the LDA data to the condition of the velocity trav
erses. 

The comparison between the velocities as measured by the 
two methods for the nucleating tests is shown in Fig. 9. It can 
be seen that the agreement between the traversing and LDA 
measurements for these tests is satisfactory. The agreement 
obtained between the measurements is superheated tests was 
poor. This was thought to be due to the absence of seeds in 
the LDA measurements. 

Conclusions 
1. Nucleating flow conditions experienced in steam turbine 

blading can be reproduced for systematic study by the blow-
down technique. It has been demonstrated that under the short 
run times available, the flow can be traversed downstream of 
the cascade satisfactorily. 

2. It has been confirmed that the use of LDA in wet steam 
during the short run times is possible and the quality of agree
ment between the LDA and traversed velocities has been sat
isfactory. 

3. For the typical configuration studied, nucleating flows 
have exhibited lower thermodynamic efficiencies than those 
obtained in superheated flows. 

4. The measured drop in efficiency has been 7.3 percent 
for the tests with subsonic outlet and 4 percent in those where 
the outlet has been supersonic. No analysis of the individual 
factors contributing to the loss have been presented but in 
parallel theoretical studies the thermodynamic component of 
the loss has been estimated to be approximately 5 percent. 
Comparison of this estimate with the measured losses indicates 
that in the case of the blade geometry investigated the aero
dynamic losses experienced by the flow are not significantly 
affected by condensation when the outlet flow is supersonic. 
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Fig. 9 Comparison of velocity measurements by LDA and by probe 
(uncertainty in measured distances ± 1.0mm, in deduced traversed ve
locities ±0.5 percent, in LDA Data + 10 m/s) 

This contrasts with tests with subsonic outlet in which the 
aerodynamic losses have been greater in nucleating flows. 

5. In the range of conditions investigated the efficiency of 
nucleating flows does not appear to vary greatly with the extent 
of the supercooling of the steam supply. 
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A P P E N D I X 
Calculation of Flow Velocity and Efficiency of Expansion 

The state path of a typical flow element is shown on the 
enthalpy-entropy diagram in Fig. 10. The inlet stagnation con
ditions are known and are represented by point 01. Point 2 
represents the state of the fluid at the traversing plane, point 
02 is the corresponding stagnation state and point 2' represents 
the downstream conditions resulting if the expansion were 
isentropic. To estimate the flow velocity from the measured 
static and total pressures P2 and P02 at this plane it was assumed 

a. 
00 

Entropy 
Fig. 10 Expansion path 
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that (a) heat transfer between the fluid streams was negligible 
and (b) that in the plane of traversing the fluid was substantially 
in thermodynamic equilibrium and the interphase slip was neg
ligibly small. This was because it was noted from the earlier 
observations that the zone of rapid condensation occurred just 
downstream of the throat. The nucleated droplets were very 
small in size, possessed considerable amount of surface for 
interaction with the vapor and the changes in the flow were 
more gradual in the plane of traversing. 

With the assumption of no heat exchange between streams, 
stagnation enthalpy at the downstream plane h02 was taken to 

be equal to the inlet value hm which together with P01 was 
sufficient to determine the remainder of the properties at point 
02. As the fluid is assumed to be at equilibrium at (2), the 
stagnation properties at 02 are also those of equilibrium states. 
With the stagnation conditions determined entropy at point 2 
can be set equal to that at 02. Thus from known pressure and 
entropy at point 2 and the assumption (b) above all other 
properties at the downstream plane can be calculated. 

With the fluid states thus determined, the outlet velocity is 
calculated from t'he enthalpy drop hoi - h2 and the efficiency 
of the expansion as (hm - ^2)/(^oi - h2'). 
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Development of a k-e Model for 
Bubbly Two-Phase Flow 
An extension of the k-e model for bubbly two-phase flow is proposed and tested 
against experimental data. The basic assumption made is that the shear-induced 
turbulence and bubble-induced turbulence may be linearly superposed. This as
sumption results in a model with two time constants that matches both homogeneous 
two-phase turbulence data (Lance and Bataille, 1991) and pipe data [Serizawa, 
1986). The coefficients of the single-phase k-e model have not been modified and 
only one additional coefficient is required: the virtual volume coefficient of the 
bubbles, which may be determined from first principles. This model not only agrees 
with the data trends, but it also predicts the turbulence suppression which has been 
measured for high Reynolds number bubbly air/water flows in pipes. 

Introduction 
The formulation of constitutive relations for the Reynolds 

stresses in the two-fluid model (Ishii, 1975) is an important 
step in the development of multidimensional two-phase flow 
computational fluid dynamics (CFD). One of the earlier works 
on turbulence modeling for this purpose was performed by 
Drew and Lahey (1982) who applied mixing length theory to 
analyze the phase distribution in vertical bubbly pipe flows. 
Lee et al. (1989) were the first to perform closed-loop CFD 
predictions of lateral phase distribution in vertical pipes by 
applying the k-e model to bubbly flows. Lopez de Bertodano 
et al. (1990) extended this work to the r-e model to account 
for the non-isotropy of the turbulence. 

The experimental data base available to develop a two-phase 
turbulence model is small. Lance and Bataille (1991) measured 
homogeneous two-phase grid generated turbulence with a laser 
doppler anemometer (LDA). Serizawa et al. (1986) used an X-
sensor hot-film probe to measure the shear stress and the nor
mal stresses for bubbly flow in a pipe. Wang (1987) used a 
single sensor boundary layer hot-film probe and a three-sensor 
conical hot-film probe for both bubbly up and down flows in 
a pipe. Both Serizawa and Wang observed two-phase turbu
lence suppression for superficial liquid velocities greater than 
1 m/s (i.e., the liquid phase turbulence decreased when bubbles 
were added to the flow). 

The object of this paper was to investigate the constitutive 
relations necessary to adapt the k-e model (Launder and Spald
ing, 1974) to bubbly flows. First the standard single-phase 
k-e model will be presented, followed by an analytic solution 
of homogeneous turbulence decay. Then the two-phase tur
bulent kinetic energy equation (Kataoka and Serizawa, 1991) 
will be discussed followed by two possible two-phase k-e model 
variations. The merits of each will be discussed in terms of 
two simple cases of bubbly flow turbulence: bubbles rising in 
a still tank of liquid, and homogeneous decay of bubbly flow 
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turbulence. Finally the best model will be used to analyze the 
effect of phase distribution and turbulence suppression in bub
bly pipe flows. 

The Transport Equation of Single Phase Turbulence Kinetic 
Energy. The Reynolds stress conservation equations may be 
derived by time averaging the dot product of the Navier-Stokes 
equations and the fluctuating component of the liquid velocity, 
u ' . Taking the trace of these equations yields the conservation 
equation for the turbulent kinetic energy (Tennekes and Lum-
ley, 1974): 

P = - V«u' Ar + — - u ' u ' : V u - u V u ' : ( V u ' ) (1) 
Dk 

Dt~ \ p 

where, the turbulent kinetic energy is given by: 

1 
k = - u 'U , 

2 
(2) 

p' is the fluctuating pressure, p is the liquid density, and v is 
the kinematic viscosity of the liquid. The first term on the 
right-hand side of Eq. (1) is a diffusion term. The second term 
is the production of the turbulent kinetic energy, which may 
be shown to be identical to the loss of kinetic energy of the 
mean flow. Finally, the last term represents the viscous dis
sipation, and since it is a squared quantity it is positive definite. 

The Single-Phase k-e Model. This model, which was de
veloped by Launder and Spalding (1974), is based on a set of 
constitutive relations for the right hand side of Eq. (1). The 
Reynolds stress tensor in the production term is modeled ac
cording to the customary relation: 

(3) -v , (Vu+Vu 7 " ) 

where v, is the turbulent kinematic viscosity. 
Similarly, the diffusion term is modeled as: 

k+'- = n' k= -v,Vk (4) 
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The remaining term is the turbulence dissipation rate: 

e ^ u V u ' : ( V u ' ) r 

1 

(5) 

Thus the turbulence kinetic energy transport equation may be 
written: 

— = V u , V H u , ( V 5 + V u r ) : V U - e (6) 
Dt 

Similarly, the turbulence dissipation rate is modeled with an
other transport equation proposed by Hanjalic and Launder 
(1972): 

^ = i V B , V E + - [ c d » ( (Vn+Vu r ) :Vn-c E 2 e ] (7) 
Dt ae k/e 

where (Launder and Spalding, 1974), ae = 1.3, c£l = 1.44, 
and ce2 = 1.92. This equation possesses production and dis
sipation terms that are similar to those in the kinetic energy 
transport equation, Eq. (6), but are divided by the turbulence 
time constant, T, = k/e. 

The correlation for the turbulent viscosity is derived from 
Prandtl's mixing length theory, assuming that the turbulence 
time constant is proportional to the time that it takes for a 
fluid particle to move half way around a large eddy. The 
resulting equation proposed by Launder and Spalding (1974) 
is: 

k2 

»i = c^ — 
6 

(8) 

with c„ = 0.09. 
Once the total kinetic energy is calculated the Reynolds 

stresses may be computed using an extension of Eq. (3): 

u ' u ' = - u , ( V u + Vu ) + - Ak (9) 

where A is the turbulence anisotropy tensor which may be 
calculated by one of the various algebraic stress models avail
able (e.g., Naot and Rodi, 1987). Naturally, for the case of 
isotropic turbulence A = I. 

Single-Phase Homogeneous Turbulence. Let us next con
sider the homogeneous decay of turbulence, since it is a very 
simple case. Indeed, there are no turbulence or velocity gra
dients so there are no diffusion terms and no production terms, 
only dissipation. Then Eq. (6) becomes: 

Dk 

Similarly Eq. (7) simplifies to: 

De e 

DT-^V
 (11) 

Thus combining Eqs. (10) and (11) and integrating yields: 

«0 \kc 

where k0 and eo a r e the initial conditions. Inserting this into 
Eq. (10) yields: 

(12) 

D_ (k_ 
Dt \k0 

which has the solution: 

k_ 

l + fe: "2 -

c e2" 

(13) 

(14) 

We note that ce2 = 1.92 s 2, thus Eq. (14) may be simplified 
to: 

k0 

Therefore the turbulence decays with a time constant, r 

_~p~t/(k0/t0) (15) 

i * 

The Transport Equation of Two-Phase Turbulence Kinetic 
Energy. Kataoka and Serizawa (1991) obtained an equation 
for the two-phase turbulent kinetic energy which is similar to 
Eq. (1) and was obtained with the two-phase time averaging 
method (Ishii, 1975): 

Dk, ,{, pi 
a,— = - V»a,u, \k, + — 

Dt \ pi 

-a/U/U/ : VU/-a/i;Vu/ : Vu/ +Skli (16) 

where / is the liquid phase subscript, a, is the liquid fraction, 
and Sklj is the interfacial source of turbulence, which is 

->*// : --MJfuR, (17) 

assuming no interfacial area change, where M« is the inter
facial drag force, uR = ng - u,, and g is the subscript for the 
gas phase. This term represents the work done by the gas on 
the liquid phase which gets transformed into turbulent eddies. 

Two-Phase k-t Models. Constituting a kinetic energy equa
tion from Eq. (16) is similar to the single-phase flow case: 

Dk, D 
OLI -777 = a./— V'[a/u,Vkj\ Dt Dt 

+ a , [ D , ( V u + V u [ ) : V u - f ] + S w (18) 

The problem is how to constitute the dissipation term, e, for 
the case of bubbly flows. 

Single Time Constant Model. The straightforward way to 
model the two-phase dissipation equation is to proceed in an 
analogous way to the single-phase k-e model. Then 

De I" v, 
a,—= V» a,— Ve 

Dt ae 

+ fk [ C " u ' < v ™' + V u f r v u z - C a e J + S,, (19) 

and the problem that remains is how to constitute the interfacial 
source of dissipation term. For the case of bubbles rising in a 
still-water tank, assuming steady fully developed flow, Eqs. 
(18) and (19) become (Lee et al., 1988): 

0=-uie + Ski (20) 

0 = " <2/Ce2 T € + Se; 
k 

(21) 

So the interfacial production of dissipation is constrained to 
be: 

"->e/ — Ce2 S/ij (22) 

For two-phase homogeneous decay of turbulence Eqs. (18) and 
(19) become: 

and, 

Dk, 
o:/— = Ski-a,e 

De c 
Dt 

(23) 

(24) 

where for uniform and homogeneous flow, the diffusion and 
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Fig. 1 Decay of grid generated turbulence for bubbly flow (I/, 
m/s) (Lance and Bataille, 1991) 

0.6 

production terms are negligible, 
yields: 

Inserting Eq. (22) into (24) 

«/ 
De 
Dt' k, 

(25) 

and then, similarly to the single-phase case, Eqs. (23) and (25) 
may be combined to yield Eq. (12). Inserting this result into 
Eq. (23) gives: 

D /k\ Ski en (k\ca 

(26) Dt \k, 
>ki 

oiik0 

Jo_ 

which may be solved by separation of variables. Defining: 

a= , and, T,0 = — 

and assuming Ce2 = 2 the solution to Eq 

k//k0 
In 

k//k0 + a 

For a < 1 and, 2at/rH » 1 , 

(26) is: 

= - lathH (27) 

Eq. (27) can be rewritten as: 

displacement by the bubbles), for all but Taylor bubbles. How
ever, there is a small rotational contribution due to the wakes. 

The approach of linear superposition for an inherently non
linear process such as turbulence should only be considered to 
be an approximation. Even for the case of dilute flows (i.e., 
negligible bubble-to-bubble interactions) Lance et al. (1992) 
have identified three types of nonlinear couplings. First is the 
stretching of the shear-induced vortices in the potential flow 
around the bubbles. Second is the deformation of the bubbles 
by these vortices which changes the virtual volume coefficient 
of the bubbles and also the drag force. Similarly, the liquid 
eddies may be expected to deform also (Kataoka and Serizawa, 
1991). Third, is the interaction between the small vortices in 
the wakes with the shear-induced vortices. 

Another type of nonlinear coupling has been identified by 
Squires and Easton (1989) for particle laden flows. They per
formed direct numerical simulation analysis of small particles 
in homogeneous turbulence and found that the drag of the 
particles on the eddies produced a damping effect on the tur
bulence field of the continuous phase. This effect was greater 
for higher particle loadings (i.e., higher volume void fractions) 
and it was uniform across the whole energy spectrum. For the 
case of bubbles which are relatively large it would be expected 
that the low frequency part of the spectrum would be primarily 
affected. Another nonlinear effect could occur if the bubbles 
preferentially locate themselves in certain regions of the tur
bulence field. Anyhow all these important effects are being 
neglected at this early stage of model development and one of 
the tasks that remains is to determine at which point the linear 
superposition approach used is no longer valid. 

In order to use the superposition model given by Eq. (29) 
it is necessary to constitute the bubble-induced turbulence. 
Arnold (1988) performed cell averaging to obtain the pseudo-
turbulence around a group of spheres in potential flow. His 
result is: 

(u 'u ')B i = o:s 

1 - - 3 , - ,2x 
— U P U P + — - UD I 

20 20 = 

- i = a ( l + 2e ' i * ) (28) 

which may be rewritten in matrix form as: 

/4/5 0 0 

0 (u u )BI = 3/5 0 

0 0 3/5 

1 
ag 2 »i \UR\7 

(30) 

(31) 

thus the asymptotic value of k//k0 is 'a' and the time constant 
for turbulence decay is ' r , / 2 o ' . Since a = (S*,/a,e0)1/2, we w h e r e f o r potential flow around a sphere, the virtual volume 
see that the asymptotic value depends on the initial dissipation 
rate, e0, though it should only depend on the bubble-induced 
turbulence. Moreover, as can be seen in Fig. 1, Lance and 
Bataille (1991) observed that the time constant for the decay 
of bubbly flow grid generated turbulence, both with bubbles 
and without them, is approximately the same (i.e., k0/e0). This 
is true for this model only if a s 1/2. Therefore the single 
time-constant model fails to reproduce both the asymptotic 
value and the time constant of homogeneous decay of bubbly 
flow turbulence; clearly something is missing. 

Two Time-Constant Model. This model was originally for
mulated in terms of physical arguments so they will be pre
sented first. Then it will be shown that it can be cast in a form 
consistent with the two-phase averaged equation for turbulence 
(i.e., Eq. (18)). 

The experimental data of Lance and Bataille (1991), Fig.' 1, 
shows that for low void fractions the linear superposition of 
grid generated shear-induced (SI) turbulence and bubble-in
duced (BI) turbulence is appropriate: 

k,= ksl + km (29) 

Theofanous (1982) made the same observation for turbulence 
on the centerline of a vertical pipe, for up to 10 percent void 
fraction. The bubble-induced turbulence is primarily composed 
of the irrotational motion (i.e., pseudo-turbulence due to liquid 

coefficient is C,„ 1/2. The bubble-induced turbulent kinetic 
energy is obtained by taking the trace of Eq. (31): 

1 _ 2 

^Bla = ag~^ Cvm I ufi I (32) 

For completeness of the formulation the effects of inertia and 
diffusion may be included even though they are normally neg
ligible. A first order relaxation type transport equation for 
bubble-induced turbulence is thus obtained: 

«/ -pfr = v * [«/"/VATBI] + - (kma -
Dt TD 

• * B l ) (33) 

where kma is the asymptotic value given in Eq. (32), for the 
case when uR reaches its terminal value, and rb is the time 
constant of a bubble. Hence, a second time constant has been 
introduced. 

The shear-induced turbulence of the liquid is modeled with 
the standard single-phase transport equation, Eq. (6), as mod
ified by the two-phase volumetric fraction terms: 

a/ -fif = V • [a,v, V *SI] + «,[i>si - esi] (34) 

where PSi and eSi are the production and the dissipation of the 
shear-induced turbulence. PSi is given by the second term on 
the right hand side of Eq. (6). eSi is given by the standard e 
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Fig. 2 Comparison of turbulence models with bubbly flow grid gen
erated turbulence data of Lance and Bataille, 1991, (Ut = 0.6 m/s, a = 
1%) 

equation modified for two-phase flow in an analogous way as 
Eq. (34). If Eqs. (33) and (34) are added, then: 

1 
'• = V • [otiv, V k,] + ailPsi - «si J + 

Dt rb 

Now Eqs. (18) and (35) are equivalent if: 

ai—;=V'[aivlVki] + ai{Psi-esl]+- (kma-km) (35) 

a,e = afyi +' 
Tb 

and, 

Ski~ 
Tb 

(36) 

(37) 

Equation (36) means that the total dissipation is the linear 
superposition of the shear-induced and the bubble-induced 
dissipation, where the latter is given by a first order relaxation 
model. 

Finally, using the well-known expression for interfacial drag: 

"= ag 4 ID P,UR (38) 

and inserting Eqs. (17) and (32) into Eq. (37) yields the re
quirement that the relaxation time constant must be: 

7 V 
3 Cr 

Db 

UR 
(39) 

for this model to be consistent with Kataoka's two-phase av
eraged turbulent kinetic energy equation. This time constant 
is proportional to the residence time of a bubble, which is an 
appropriate value for pseudo-turbulence. This time interval is 
usually very short compared to the time constant of the shear-
induced turbulence and may be neglected for most practical 
cases. Hence, Eq. (33) reduces to: 

fcBi = ^Bia (40) 

Applying this model to the problem of bubbles rising in a still 
water tank yields: 

*si = 0, es, = 0, ki=km = km (41) 

which is the correct solution. 
For the case of homogeneous decay of turbulence, 

•PArsi 
Dt 

Desi 

Dt ' 
<=si 

(42) 

(43) 
fcsi/«si 

So the shear-induced turbulence decays as in the case of single-
phase flow, Eq. (15). A comparison between the single time 

constant model, the two time constant model and the data of 
Lance and Bataille for grid generated bubbly flow turbulence 
is shown in Fig. 2. It can be seen that the two time constant 
model yields far superior results. 

Bubbly Pipe Flow Turbulence. The two time constant tur
bulence model together with the multidimensional two-fluid 
model (Ishii, 1975) were used to perform CFD calculations for 
bubbly flows in pipes. The computations were done with 
PHOENICS 1.4,-developed by Spalding et al. (1988), on the 
NCSA CRAY-YMP. PHOENICS is a transport equation sol
ver with two-fluid model capability. It is based on the SIMPLE 
algorithm developed by Patankar (1980). The transport of mass 
and momentum equations for the liquid and the gas and the 
equations for liquid turbulent kinetic energy and dissipation 
were solved. A more detailed description of the two-phase 
constitutive models used in the momentum equations has been 
given by Lance and Lopez de Bertodano (1992). Significantly, 
the turbulence model presented in this paper is a key component 
of these constitutive models. 

In order to solve the phasic momentum equations it was 
necessary to define closure laws for the two-phase Reynolds 
stresses and the turbulent viscosity. As with the turbulent ki
netic energy, the Reynolds stresses were constituted using linear 
superposition: 

(44) u ' u ' = ( U ' U ' ) S I + (U'U')BI 

where the shear-induced (SI) component is given by Eq. (9) 
and the bubble-induced component is given by Eq. (31). The 
principle of superposition was also used for the two-phase 
turbulent viscosity. That is, Sato (1981) proposed that, 

(45) 

where, 

v,= vtf.. + vln 

1.2y <xg\nR\ (46) 

This model for the bubble-induced enhancement in viscosity 
is based on the concept of mixing length, where the bubble 
radius is taken to be the bubble-induced turbulence length 
scale. The shear-induced turbulent viscosity was calculated 
according to the standard k-e model: 

„,SI = 0 .09^1 (47) 

The boundary conditions are now discussed. First, the time-
averaged steady-state gas continuity equation is a first order 
hyperbolic equation that, given the velocity field, may be solved 
along its characteristics for the void fraction. Hence the value 
of the void fraction at the channel inlet is the only required 
boundary condition. 

The rest of the equations were made parabolic (i.e., axial 
diffusion was neglected), with axial distance as the time-like 
variable. This approximation is legitimate in cases where axial 
convection is dominant, as occurs after the flow becomes fully 
developed. Therefore the velocities, the turbulent kinetic en
ergy and the dissipation were specified at the channel inlet and 
at the walls but not at the channel outlet. There was one 
exception that occurred with the gas velocity. For bubbly flow 
it is customary to neglect all the diffusion terms in the gas 
momentum equation so the only constraint applicable at im
pervious walls is that the normal velocity must be zero. For 
the liquid velocity the no slip condition was replaced with the 
logarithmic law of the wall at an appropriate point in the 
inertial sublayer. The boundary conditions for the k-e model 
are the conventional ones given by Launder and Spalding 
(1974). 

To obtain computational convergence the under-relaxation 
false time-step parameter used by PHOENICS was adjusted. 
The optimum false time-step was given by the Courant criterion 
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Fig. 5 Pipe: Comparison with Serizawa's data: void fraction (j, = 1.36 
m/s; jg = 0.077 m/s; Db = 3 mm) 

J— = 1 , 
Ax 

(48) 

where j is the volumetric flux of the mixture and Ax is the 
axial node size. Figures 3 and 4 show a nodal convergence test 
for the mesh size used in the computations (i.e., 40 radial 
nodes and five nodes per diameter in the axial direction). 

A comparison with one set of data by Serizawa et al. (1986) 
for bubbly upflow in a pipe is shown in Figs. 5 to 8. Inter
estingly, Fig. 5 shows that fory, = 1.36 m/s the liquid phase 
turbulence levels for bubbly flow are lower than for single-
phase flow. This may be explained in terms of Figs. 6 and 8; 
for two-phase flow the velocity profile is flatter and the Reyn-

1.60-": 
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— model: jg=0.077 m / s 

model: jg=0.0 m /s 

j£= 1.360 m/s 
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Fig. 6 Pipe: Comparison with Serizawa's data: velocity (/, = 1.36 m/s; 
ig = 0.077 m/s; Db = 3 mm) 
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Fig. 7 Pipe: Comparison with Serizawa's data: normal stress (/, = 1.36 
m/s; jg = 0.077 m/s; Db = 3 mm) 
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Fig. 8 Pipe: Comparison with Serizawa's data: shear stress (/, -• 1.36 
m/s; jg = 0.077 m/s; Db = 3 mm) 

olds shear stress is lower, except near the wall, so, as can be 
seen in Fig. 9, the production of shear-induced turbulence: 

—r-rdu 
Psi=~u v — 

dr 
(49) 

is significantly reduced and the contribution from bubble-in
duced turbulence cannot make up the difference. Therefore 
the turbulence suppression is not caused by additional bubble-
induced dissipation but by a reduction of shear-induced pro
duction. 

In Fig. 7 the bubble-induced turbulence, which was the dom-

132/Vol . 116, MARCH 1994 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



• \0 .30-

J. 
0- 0.20-

model: jg=0.0 m/s 
model: j ,=0.077 m/s 

j j= 1.360 m/s 

0.20 0.40 0.60 
r/R 

Fig. 9 Turbulence production for single-phase and two-phase flows (// 
= 1.36 m/s; jg = 0.077 m/s) 

DDDOD Wang's data, jg=0.10 m / s 
A A A A A Wang's data, jg=0.40 m / s 

model 

j<=1.08 m/s 

<> A A A A A _ 

0.20 0.40 0.60 0.80 
r/R 
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Fig. 11 Comparison with Wang's data; velocity 

inant component of the turbulence at the centerline of the pipe, 
was calculated using Cvm = 2. This value, which is much higher 
than for spheres moving in a straight line, is appropriate for 
oblate bubbles moving in helical paths. Lance and Bataille 
(1991) developed an equation for the kinetic energy of the flow 
around such bubbles starting with the potential flow equations 
of Saffman (1956). Then they proceeded to measure the shape 
and trajectory of 5 mm bubbles rising in a tank of still water. 
From their equations and measurements, 1.2 < Cvm < 3.4, 
thus the value chosen for the pipe computations is reasonable. 

The results of the shear stress (i.e., u'V = v,du/dr) com
putations with (C^b = 1.2) and without (C^ = 0.0) bubble-
induced turbulent viscosity are shown in Fig. 8. It can be seen 
that, as expected, Sato's model gives better results. 
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Fig. 12 Comparison with Wang's data: velocity fluctuations (j, = 1.08 
m/s, jg = 0.10 m/s) 
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Fig. 14 Comparison with Wang's data: shear stress 

Figures 10 to 14 show a comparison with Wang's data (1987). 
The agreement between model and data is quite good except 
for the shear stresses (Fig. 14). It is hard to reproduce the 
shear stresses measured by Wang because the velocity profile 
is practically flat. Since the data was obtained with a conical 
three-sensor probe, and not an A'-sensor probe, the discrepancy 
may be due in part to the data and not the model. Unfortu
nately, there are very few sets of bubbly flow shear stress data. 
The only other available set is Serizawa's which shows better 
agreement. In any event, the comparisons with Wang's data 
are very useful in other respects. Figure 11 shows that the 
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model reproduces the low void fraction velocity data better 
than the high void fraction data. The problem may be attrib
uted to the two-phase viscosity model. The value calculated 
for the viscosity at high void fractions is too high. Therefore 
the calculated velocity profile is too flat. For the same reason 
the calculated shear stresses near the wall, where the void peaks 
are located, appears to be too high. This is true for the com
parisons with Wang's data and Serizawa's data. Hence the 
linear superposition assumption appears to fail at high values 
of the local void fraction. A more systematic analysis is needed 
in order to quantify the range of validity of this assumption, 
but the limited amount of data presently available precludes 
this. 

The comparison of the normal turbulent stresses shown in 
Fig. 12 is another example of "bubble-induced dissipation" 
which is explained by the absence of shear in the flow. Figure 
13 is a similar comparison for higher void fraction. In this 
case the model seems to predict the magnitude of the turbulence 
but not the anisotropy. In general, the agreement is better 
away from the wall. Interestingly, in order to match the data 
a lower virtual mass coefficient (cf. Eq. (31)) can be used for 
the high void fraction case (i.e., Cvm = 1.2 instead of 2.0). 
While Cvm = 2.0 seems appropriate for the ellipsoidal bubbles 
observed in the experiments, the lower virtual volume appar
ently reflects nonlinear bubble-bubble interactions that appear 
at high void fractions. 

Conclusions 
The development of a two-phase turbulence model is a nec

essary prerequisite to perform accurate two-phase CFD anal
ysis. A model for dilute bubbly flows has been proposed based 
on the assumption that the coupling between shear-induced 
and bubble-induced fluctuations is weak. This model is based 
on experimental and analytical information about flow around 
a bubble. It works well in reproducing experimental air/water 
data for homogeneous decay of turbulence and turbulent flow 
in a pipe. 

Further research is needed to determine the limitations of 
the model when nonlinear coupling effects are significant, to 
understand what these effects are and how to modify the model 
to take them into account. 
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Analysis of Linear Encroachment 
in Two-Immiscible Fluid Systems 
in a Porous Medium 
The flow of two immiscible fluids in a porous medium was analyzed accounting for 
boundary and inertia effects. This problem was first solved by Muskat using Darcy's 
equation for fluid flow in a saturated porous medium. In the present analysis the 
boundary and inertia effects have been included to predict the movement of the 
interfacial front that is formed as one fluid displaces the other. In the present work 
a theoretical study that accounts for the boundary and inertia effects in predicting 
the movement of the interface for linear encroachment in two immiscible fluid system 
in a porous material is presented for the first time. The results of the present study 
when compared with the Muskat's model show that consideration of the boundary 
and inertia effects becomes important for low values of mobility ratio (e<1.0) and 
higher values of permeability (K>L0xl0~ -10 m2. 

1 Introduction 
Linear encroachment or displacement of immiscible fluid is 

an important problem in various applications such as the oil 
industry and some manufacturing processes. For example, in 
the oil industry, the simultaneous flow of oil, water, and gas 
in porous rock strata occurs with the production of oil from 
oil fields. For this application, the porous strata which is sat
urated with oil is contiguous to the water bearing sands and 
when an oil pool is tapped the oil in it begins to move toward 
the wells and neighboring waters begin to encroach upon the 
oil pool. In some situations, the encroaching fluid drives the 
second fluid and the second fluid flow is entirely due to the 
hydrostatic head of the encroaching fluid column. The general 
features of linear encroachment were discussed by Muskat 
(1937). His work corresponds to a case where the two fluids 
are moving in a "narrow" channel where the cross sectional 
area is small compared to its length. The problem was treated 
as a one dimensional flow through a porous medium by Muskat 
and the Darcy's law was used as the basis for analysis. In this 
work a theoretical study that accounts for the boundary and 
inertia effects in predicting the movement of the interface for 
linear encroachment in two immiscible fluid system in a porous 
material is presented for the first time. 

2 Analysis 
A schematic diagram of the problem considered in the pres

ent study is shown in Fig. 1. It should be noted that the results 
obtained here are applicable to any two immiscible fluids. The 
porous strata is initially saturated with fluid " 1 " at uniform 
pressure. It is subjected to a flow of fluid "2" from a reservoir 
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that has a higher pressure than those initially prevailing in the 
porous strata. Thus, the problem becomes one of studying the 
progress of the "interfacial front" as fluid "2" displaces fluid 
" 1 " and eventually saturates the porous media. The model 
developed for the analysis of the problem employs the follow
ing assumptions and simplifications: 

1 Fluid " 1 " and fluid "2" are incompressible. 
2 The porous strata has uniform porosity and is isotropic. 
3 Variable porosity effects are neglected in the momentum 

equation. 
4 No mixing of the fluids occur at the interface. 

2.1 Governing Equations. It is customary to use the "lo
cal volume averaging" technique to develop a rigorous set of 
governing equations for the transport processes in porous 
strata. The local volume average velocity (Vafai and Tien, 
1982) is used to derive the governing momentum equation. 

With the assumptions previously stated, taken into account, 
the volume-averaged governing balance equations (separately 
for regions saturated with fluid " 1 " and "2") are established 
as (Vafai and Thiyagaraja, 1987): 

Continuity: 

V-<V,->=0 (1) 
/ = ] , 2 (for regions 1 and 2, respectively). 

' and Momentum: 

-V<P,> + Lleff,,V
2<V,>-^<V,> 

F,8 

K, 
P<IK, l><V,>=0 (2) 

i= l , 2 
In the present case Eq. (2) reduces to (Vafai, 1984 and Vafai, 
1986): 
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Interfaclal front 

V^' 
X 

Fig. 1 Schematic diagram of the problem 

d{Pj) 

dx 
- + /x, 

d2<u.i) 

dyl •g<" '>-
( = 1 , 2 

Ffi 
P<«?> = (3) 

In Eq. (3), n is the fluid viscosity, p the fluid density, K the 
permeability of the porous medium, <5 the porosity, V the 
velocity vector, jxeK effective viscosity of the porous/fluid sys
tem, <P> the average pressure read off a pressure gage, and 
; '=1, 2 refers to regions 1 and 2, respectively. It should be 
noted that F is an empirical function that depends on the 
Reynolds number and the microstructure of the porous me
dium. The experimental procedure for determining the value 
of F and K are described in Vafai and Tien (1982). Typical 
values of K and the given functional dependence of F can be 
deduced from a number of empirical results such as those of 
Muskat (1937), Beavers and Sparrow (1969), and Koh et al. 
(1977). In the above formulation, the pressure gradient in the 
j-direction is negligible. This has rigorously been shown to be 
the case in Vafai (1984) and Vafai and Thiyagaraja (1987). 
Therefore, the flow is driven primarily by the pressure gradient 
in the ^-direction. 

The following boundary and interface conditions are ap
plicable for the present problem 

<M,->=0 at y = 0 

(P)=Pin at x = L and (P)=Pe at x=0 

<«1) = <«2> at the interface x-xo(t)=0 

and location of the interface x0{t), using the Darcy's law, is 
given by 

x0(t)= u, dt (4) 

where up is the pore velocity. In terms of <«,->, that is using 
the generalized model Eq. (3), the location of the interface is 
given by 

x0(t,y) = \ <«/ )dt + c(y) i=\ or 2 (5) 

3 Analysis 

To analyze the problem, the velocity field is nondimension-
alized on the basis of the characteristic Darcian-convective 
velocity uci as <H >,•/»<.,- where <«>/ is the velocity in the Ah 
region and uci, the Darcian velocity in the Ah region is obtained 
using the result obtained by Muskat (1937). The expression 
for uCj is given by: 

" « = - {Ki/lLj) 
d{Pj) 

dx 
(6) 

where the subscript ";'" refers to the Ah region in the porous 
media (/ = 1 represents the region saturated by the resident fluid 
and ; = 2 represents the region saturated by the penetrating 
fluid). 

Thus Eq. (3) after nondimensionalizing with the Darcian 
velocity reduces to 

K\ aruj „ „ , , „ 
(7) 

where 

and, ft is given by: 

and 

«/= {u)j/uCj 

ft = FRe,-

P-jKuci 
Re, 

V-i 

(8) 

(9) 

Equation (7) is solved using the singular perturbation anal
ysis for obtaining velocity profiles in the boundary layer and 
the core region (Vafai and Thiyagaraja, 1987). The two velocity 
profiles, one originating from the boundary layer and the other 
from the core are matched at their interface. This matching 
process is done as outlined in Vafai (1984, 1986). 

The porosity of the matrix is selected as the perturbation 

Nomenclature 

F = an empirical function that de
pends on the Reynolds num
ber and the micro-structure of 
the porous medium 

H = width of the channel [m] 
/ = unit vector aligned along the 

pore velocity, up/\up\ 
K = permeability of the porous 

structure [m2] 
L = horizontal extent of the chan

nel [m] 
= pressure [Nm~2] P 

Pin 
Pe 
Re 

pressure at inlet [Nm ] 
pressure at exit [Nm"2] 
Reynolds number defined by 
Eq. (9) 
the dimensionless velocity 
field in the x-direction, 
u- {u)/uc 

the dimensionless velocity 

field in the boundary layer re
gion 

u* = the dimensionless velocity 
field in the core region 

(u) = the dimensional velocity field 
in the ^-direction [ms~'] 

uc = modified Darcian convective 
velocity [ms_1] 
Darcian convective velocity uD 

up 

V 
x 

X 

xn 

[ms-1] 
pore velocity [ms '] 
vector velocity [ms -1] 
coordinate along the horizon
tal length of the channel from 
left to right as shown in Fig. 1 
[m] 
coordinate along the horizon
tal length of the channel from 
right to left as shown in Fig. 1 
[m] 
location of the interface using 

the generalized model, Eq. 
„ (2), [m] 

X% = location of the interface using 
the Muskat's model [m] 

y = coordinate along the vertical 
length of the channel 

p = fluid density [kg m~3] 
5 = porosity of the medium 
ix = fluid viscosity [kg m ' 1 s"1] 

/ieff = effective viscosity of the po
rous/fluid system [kg m _ 1 

e = mobility ratio defined by Eq. 
(22) 

< > = 'local volume average' of a 
quantity 

Subscripts 

/ = refers to regions 1 or 2 de
fined in section 2.0 
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parameter. Thus the velocity in the boundary layer region is 
expanded in terms of powers of the porosity <5 as: 

u1 = ul + 6ul + b1u2
b+. . . (10) 

and similarly the velocity in the core region as: 

w,* = u» + bu\ + b2u\ + . . . (U) 

where / = 1 or 2 for regions 1 (oil) or 2 (water) and ub is the 
dimensionless velocity field in the boundary layer region and 
u* is the dimensionless velocity field in the core region. It 
should be noted that Vafai and Thiyagaraja (1987) have shown 
that the obtained singular perturbation solutions are valid even 
for porosities as high as 0.98. 

Substituting the assumed profiles in Eq. (7) we get the so
lutions for the velocity in the boundary layer region and core 
region separately as follows: 

Table 1 Input parameters for the analysis 

ul = (? 

where 

2 + 

"* = / 

' 2 

«g=l -

1+ | - + rj)e 
- 2 , 

(12) 

(13) 

13 29 
" - 3 6 \e 

10 

12 

ij = -
y 

(14) 

(15) 

In the core region, the velocity profile is obtained as: 

u* = 1-138+ 2p252-5Pi53 (16) 

The velocity in the boundary layer region uf and in the core 
region u* were both nondimensionalized based on the Darcian 
velocity uci. Next, the progression of the interfacial front for 
immiscible displacement is traced using Darcy's law. In what 
follows Darcy's model is used to predict the Darcian velocity 
as a function of the position of interface. 

According to Darcy's law, the velocities in region " 1 " and 
" 2 " are given by: 

K dPx 

li\ dx uc\- (17) 

and 

" c 2 = 

KdPi 

ix2 dx 

where " 1 " and " 2 " represents the two fluid regions separated 
by the interface. Also 

at x=L P = Pin 

at x = 0 P = Pe 

and at the interface (x-x0), uc\ = uc{\ 

and Pi=P2) 

Solving Eqs. (17) and (18) and substituting the boundary and 
interface conditions given by Eqs. (19) and (20), the Darcian 
velocity uD at the interface is obtained as: 

K \Pin~Pe] 

(20) 

UD /X, [eL+X™(l-e)} 

where e is the mobility ratio defined as: 

M2 1L 

and the equation for X^ is obtained as: 

V*i 

(21) 

(22) 

Porosity, & 
Length, L 
Half width, H 
Pressure difference, N/m2 

Viscosity, resident fluid, kg/m-s 
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Fig. 2 Prediction of the location of interface using Darcy's model 

f- ^ ( l - 6 ) + (l + e ) ) + ^ ( P ' " Pe)t = 0 (23) 

Equation (23) is quadratic in X^/L and the solution is ob
tained as: 

-2e+ 4e 

xt_ 
L ~ 

-4,1 -„U? 
{MlO 

P- —P 
t-(l + e) 

2(1-6) 
(24) 

Thus, we have arrived at an analytical solution for the time-
dependent velocity profile defined by Eqs. (11) through (16) 
along with Eqs. (21) and (24). The solution from these equa
tions is substituted into Eq. (5) and the following expressions 
are obtained for X0 separately for the boundary layer and the 
core region as a function of time. 

«'f) + (f (18) e P + P 

(19) 

l_-e 
2 

K (Pi„-Pe) + — ' "' 2 " t(ul + bul + b2u2
b + . . . ) = 0 (25) 

<'fWf 
fXib 

2 

2 

K (Pin-Pe) 
/xi<5 L 

?(l-(35 + 2)3252-5(3353) = 0 (26) 

Equation (25) is used to predict the movement of the interface 
in the boundary layer region and Eq. (26) for the core region. 
The details of the encroachment is thus obtained by studying 
the progress of X0 with respect to t. 

4 Results and Discussions 

4.1 Encroachment Using Darcy's Model. Equation (24) 
gives the location of the interface with time using the Darcy 
model. Setting the values of the parameters as per Table 1, 
the values of X^/L is plotted against t for different values of 
mobility ratio e as shown in Fig. 2. The corresponding values 
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of the Darcian velocity is plotted in Fig. 3. These figures il
lustrate that, if the encroaching fluid has lower viscosity (e < 1), 
then the interface is accelerated as it advances or uD increases 
with time. For (e > 1), which implies that the encroaching fluid 
has higher viscosity, the progress of the interface is retarded. 
For the case where e = 1, the Darcian velocity uD remains con
stant with time. These results are obtained, however, without 
considering the boundary and inertial effects. 

4.2 Encroachment With Boundary and Inertia Effects. The 
generalized equation for the velocity profile that takes into 
account the boundary and inertia effects was given by Eq. (7). 
The solution for Eq. (7) was obtained using the singular per
turbation analysis. The solution consisted of two parts—the 
velocity in the boundary layer region wf given by Eq. (10) and 
the velocity in the core region uf given by Eq. (16). The bound
ary layer extends until the value of uf asymptotically reaches 
the value of u*. Assuming that at / = 0.0, the interfacial front 
is at X0/L = 1.0, the progress of the front was obtained as a 
function of time using Eqs. (25) and (26). The location of the 
interface X0(t) was used to determine the Darcian velocity, 
uD (or uci) using Eq. (21) where X%is replaced by X0(t). The 
value of Darcian velocity «„• was in turn used to evaluate ft 
[Eq. (8)] and the values of uf and u*. Thus the progress of 

the interfacial front was sequentially obtained for the boundary 
layer region and the core region separately using the generalized 
equation model [Eq. (7)]. The expressions given by Eqs. (25) 
and (26) were used to study the time taken for the interfacial 
front to progress from X0/L = 1.0 to X0/L = 0.0. These results 
are compared in Fig. 4 along with the predictions of Muskat's 
(or Darcy's) model [Eq. (24)]. The predictions were made for 
a permeability of K- 1.0 X 10"10 m2 and for three different 
values of e viz. 0.1, 1.0, 10.0. It is clear from the figure that 
both the boundary and inertia effects reduce the velocity and 
therefore slow down the progress of the front. At y = ̂ JK/b, 
the boundary effects are significant. The divergence between 
the Darcy's model and the model that takes into account the 
boundary and inertia effects, becomes more pronounced at 
higher values of e (see Fig. 4). In Fig. 5 through Fig. 7, the 
effect of varying the permeability on the progress of the in
terfacial front is illustrated. As expected, it is noted that as 
permeability is decreased to very low values the boundary layer 
becomes negligibly small. Also at a permeability of 1.0 X 10" '2 

m2, the solution predicted by the generalized equation model 
collapses to that of Muskat's model (Darcian model). This is 
illustrated in Fig. 7. 
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5 Conclusions 
In this work a theoretical analysis that accounts for the 

boundary and inertia effects in predicting the movement of 
the interface for linear encroachment in two immiscible fluid 

system in a porous material is presented. This model is required 
in the neighborhood of solid boundaries and/or faster moving 
flows. The main results given in this work shed some light on 
the importance of the boundary and inertia effects on en
croachment of two immiscible fluid systems. It is shown that 
for higher permeabilities of the porous strata (K> l.Ox 10"10 

m2) Muskat's model can significantly underpredict the time 
taken for the porous media to be completely displaced by the 
encroaching fluid. 
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Determination and Characteristics 
of the Transition to Two-Phase 
Slug Flow in Small Horizontal 
Channels 
Two-phase pressure drop and fluctuating static pressures were measured in a small 
horizontal rectangular channel (hydraulic diameter = 5.44 mm). The two-phase 
fluid was an air/water mixture at atmospheric pressure tested over a mass flux range 
of 50 to 2000 kg/m2-s. Two-phase flow patterns were identified and an objective 
method was found for determining the flow pattern transition from bubble or plug 
flow to slug flow. The method is based on an RMS static pressure measurement. 
In particular, it is shown that the transition is accompanied by a clear and abrupt 
increase in the RMS pressure when plotted as a function of mass quality. Use of 
the RMS pressure as a two-phase flow pattern transition indicator is shown to have 
advantages over pressure-versus-time trace evaluations reported in the literature. 
The transition is substantiated by a clear local change in slope in the curve of two-
phase pressure drop plotted as a function of either Martinelli parameter or mass 
quality. For high mass fluxes, the change in slope is distinguished by a local peak. 
Some degree of substantiation was found in previous work for both of the results 
(the RMS static pressure change and the local pressure drop change) at the transition 
to slug flow. 

Introduction 
It is well known that in two-phase channel flow, a change 

in pressure drop is often associated with a change in flow 
pattern. Vince and Lahey (1982) reported that Govier and 
coworkers, in their study of flow patterns, void fraction, and 
pressure drop in two-phase vertical pipe flow, found as early 
as 1957 (Govier et al., 1957, 1958) that a change in pressure 
drop accompanies a change of flow pattern. Govier and co
workers analyzed their results on the premise that the flow 
pattern transitions occur at inflection points of the void-frac
tion curves and at minimums in the pressure-drop curves. Vince 
and Lahey further suggested that the work of Hubbard and 
Dukler (1966), which categorized power spectral density (PSD) 
plots obtained from measured wall-pressure fluctuations, rep
resents the first attempt at objective classification of flow pat
terns. As a result of their study, Hubbard and Dukler concluded 
that such an analysis of pressure-drop fluctuations represents 
a viable means of studying flow pattern transitions. 

Jones and Zuber (1975) and, more recently, Vince and Lahey 
(1982), used a photon attenuation technique employing a dual-
beam X-ray system to measure chordal-average void fraction. 
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Each set of investigators computed the probability density 
function (PDF) and PSD function from their data. Jones and 
Zuber identified characteristics in the PDF that can be related 
to the various flow patterns. Vince and Lahey generated the 
first four statistical moments (mean, variance, skewness, and 
kurtosis) associated with the distributions and attempted to 
use the resulting information to develop an objective flow 
pattern indicator. They recommend using the variance of the 
PDF, because that moment responded to the observed changes 
in flow pattern and was found to be independent of liquid 
superficial velocity. The PSD function and its moments were 
not recommended for use as an objective flow pattern indi
cator. While the technique put forth by Vince and Lahey is 
promising, it is also difficult and expensive to employ because 
it requires knowledge of the void fraction fluctuations, which 
in this case were determined with an X-ray system. 
• Kelessidis and Dukler (1989) used PDF analysis of the volt
age/time traces obtained from conductance probes to identify 
flow patterns associated with upward two-phase flow in vertical 
concentric and eccentric annuli. Their approach is similar to 
that of Jones and Zuber (1975), in that they associate distinct 
characteristics of the PDF plots with particular flow patterns. 
However, Kelessidis and Dukler carried their work one step 
further, analyzing the PDF data with the objective of obtaining 
a quantitative basis for determining the various transition 
boundaries. Toward this end, they identified characteristics in 
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the PDF plots that occur when the transitions are taking place. 
They then used the information to derive mathematical models 
describing the transitions. 

Several investigators have attempted to use two-phase pres
sure data, either from pressure-drop or static measurements, 
in attempts to develop objective criteria for identifying flow 
pattern transition boundaries. Pressure data has the distinct 
advantage of being more easily obtained than void fraction 
data. In particular, Nishikawa et al. (1969), Weisman et al. 
(1979), Lin and Hanratty (1987), and Damianides and Wes-
twater (1988) used the characteristics of the pressure/time sig
nals to identify selected flow pattern transitions. 

Nishikawa et al. (1969) reported the statistical characteristics 
(PDF, RMS value, characteristic length as determined from 
correlation coefficients, and PSD) of two-phase pressure os
cillations as they varied with flow rate and flow pattern. Air-
water mixtures were introduced into a transparent, vertically-
oriented test section, with 26.0 mm inner diameter and 5.2 m 
long. Series of static pressure measurements were made using 
pressure taps distributed along the length of the test section. 
The various statistical measures of the pressure oscillations 
were correlated with observed flow patterns. Relative to the 
RMS pressure data, they observed that the RMS values of 
pressure are small in the bubble and annular flow regions and 
large in the slug and froth flow regions. 

Weisman et al. (1979) studied differential-pressure-versus-
time traces obtained under different conditions of two-phase 
flow in horizontal pipes 12 to 50 mm in diameter and concluded 
that distinctive features in the time signals can be associated 
with the various flow patterns and thereby used as the basis 
for objective prediction of flow patterns. They used a com
bination of information, including amplitude, frequency, and 
overall shape of the time signal, to establish their criteria. Their 
results can be summarized as follows: 
• Slug flow has the most distinctive trace: regularly spaced 
peaks occur with the time duration of the quiescent periods 
between peaks at least twice as long as the time duration of 
the peaks. This distinctive pattern is used to definitively es
tablish the location of the slug-to-annular transition. 
9 Stratified flow shows virtually no fluctuations and can be 
distinguished from readily observed fluctuations of wave flow; 
the frequency of the fluctuations associated with wavy flow 
increases with increasing gas flow but the amplitudes remain 
low. 
9 The observation of annular flow is accompanied by an in
crease in fluctuation amplitude over that for stratified or wave 
flow. The transition from wave to annular flow is determined 
by this increase in amplitude. 
• Within the annular region, as liquid flow is increased the 
fluctuation amplitude increases somewhat. However, a large 
amplitude increase occurs when the dispersed (bubble) flow 
region is reached. 
9 The amplitude of the fluctuations associated with dispersed 
flow decreases with decreasing gas flow rate. However, the 
frequency of the oscillations remains high. As a consequence, 
frequency provides the basis for distinguishing between dis
persed flow and plug flow. 
9 Pressure-drop fluctuations produced by wave and plug flow 
are similar and are characterized by low-amplitude, low-fre
quency oscillations. 

Weisman et al. (1979) presented their criteria in tabular form 
and used the criteria in establishing flow pattern maps for 
various two-phase flow situations. 

Ruder and Hanratty (1990) used a relatively large-diameter 
horizontal pipe (95.3 mm diameter) to study the plug-to-slug 
flow transition. They considered the fluctuation amplitude of 
pressure-versus-time traces similarly to that of Weisman et al. 
(1979). The results for the large-diameter pipe did not conform 
to earlier work in smaller pipes. The particular transition stud
ied was found to generally occur at a superficial gas velocity 

K ! , U " 1 S S n d Quick-doing 

<Alr Supply^ /Water \ 

S
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Pressure 
Temperature 

Fig. 1 Schematic diagram of adiabatic two-phase flow apparatus 

of approximately 0.6 m/s and was independent of superficial 
liquid velocity. 

Fukano et al. (1989) studied two-phase flow patterns in 
small-diameter (1,2.4, and 4.9 mm) horizontal tubes. Pressure-
drop fluctuation amplitudes and visual observations were used 
to define flow patterns. In addition, the RMS pressure was 
calculated and an increase in the amplitude was seen, predom
inantly with plug and slug flow patterns. 

In the present work, the transition from bubble or plug flow 
to slug flow was studied experimentally in a small horizontal 
rectangular channel (5.44 mm hydraulic diameter); supple
mental data were also obtained for a small diameter (6.35 mm) 
tube. This transition can be particularly important because it 
was found to be associated with a local increase in pressure 
drop, and an objective method, based on RMS static pressure, 
was used to clearly identify it. This method goes a step beyond 
the pressure/time traces of Weisman et al. (1979) and Ruder 
and Hanratty (1990). It also utilizes more fully the RMS pres
sure considered by Fukano et al. (1989). The small rectangular 
channel of this study has direct application to compact heat 
exchangers for two-phase flow applications. 

Experiment 
The flow apparatus (illustrated schematically in Fig. 1) is 

designed to allow adiabatic flow experiments with air/liquid 
mixtures in channels of small cross-sectional area. Air is sup
plied from a compressed air storage tank and flows through 
a pressure regulator and preselected rotameter to an air/liquid 
mixer. Laboratory water was used as the liquid in the current 
experiments. The water flows through a control valve and 
preselected rotameter to the mixer, where air is injected into 
the liquid stream through a porous medium in opposing walls 
of the flow channel. The two-phase mixture then flows through 
the transparent channel. The mixture exiting from the channel 
flows through an expansion to a drain. A vane-type dry gas 
meter was utilized to calibrate the gas rotameters, and a weigh-
ing-technique-with-stop-watch was used to calibrate the liquid 
rotameters. The estimated uncertainty in flow rate measure
ment is ±3 percent. The flow channel is rectangular, 1.14 m 
in length, with cross-sectional dimensions of 19.05 x 3.18 mm 
(aspect ratio of 6). (The aspect ratio is defined as the ratio of 
the height of the vertical side of the channel to the width of 
the horizontal side.) 

The measured dependent variable is pressure. Pressure taps 
are spaced at intervals of 114 mm along the entire length of 
the channel and are located at the center of the long (vertical) 
side. Both differential pressure, over a specified channel length, 
and static pressures, at two locations, are measured using cal-
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ibrated electrical transducers. Relative to the exit of the mixer, 
the pressure taps used with the static-pressure-measuring trans
ducers, P\ and P2, are located at L/Dh equal to 79 to 142, 
respectively. The channel length over which the differential 
pressure measurement is made corresponds to an L/Dh ratio 
of 132. The estimated uncertainty in pressure measurements 
is ±5 percent. 

The test procedure consisted of establishing total mass flux 
G and a mass quality x in the test section. At steady state, 
visual and photographic observations were made and pressures 
were measured. Multiple photographs were taken and pressure 
measurements were recorded and averaged on a computer-
controlled data acquisition system. Real-time pressure meas
urements were made at a sampling rate of 2048 samples/s, and 
RMS calculations were made from 2048 samples taken over a 
period of 10.24 s. RMS values reported are the average of 10 
such RMS calculations for a single test. As overall test channel 
pressure drop allowed, tests were performed over a range of 
quality (typically 10 "4 to 1) for each mass flux used (50 to 
2000kg/m2-s). 

Results 
As discussed above, it is expected that flow pattern will 

influence the frictional pressure gradient and, consequently, 
that the transition from one flow pattern to another will be 
evident in the frictional pressure gradient data. Previously, 
Wambsganss et al. (1992) presented frictional pressure gradient 
data in the form of two-phase frictional multipliers plotted as 
a function of both mass quality x and Martinelli parameter 
X. Presentation of the data as a function of Martinelli param
eter is given in Fig. 2, while presentation as a function of mass 
quality is represented by a typical result (G = 500 kg/m2s) in 
Fig. 3. A study of these representations of the data leads to 
the identification of a distinguishing feature in the results, viz., 
a local change in slope or peak in the curves at a Martinelli 
parameter of approximately 10 (see Fig. 2) and a mass quality 
of approximately 0.002 (see Fig. 3). The flow pattern transition 
boundaries shown in Fig. 3 were determined from the flow 
pattern map (Wambsganss et al., 1991) given in Fig. 4. The 
flow pattern map was generated from a combination of visual 
observation, photographs, and pressure fluctuation informa
tion. A detailed definition of the various flow pattern descrip-. 
tors is given by Wambsganss et al. (1991). 

The results shown in Fig. 3 lead one to conclude that the 
transition to slug flow is evident in the two-phase frictional 
pressure gradient data, while the slug-to-annular transition 
{also slug-to-wave and wave-to-annular for the low values of 
mass flux) is not evident. The transition from plug/bubble-
to-slug flow is abrupt and readily identified by visual obser
vation of the flow patterns. This result was also readily ap
parent from a series of photographs of the flow patterns. 

10 s 10" 0.001 0.01 0.1 1 

Mass Quality, x 

Fig. 3 Typical two-phase frictional pressure gradient as a function of 
mass quality with flow pattern transitions; 6 = 500 kg/m2s 
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Fig. 4 Flow pattern map: horizontal air/water flow in 19.05 x 3.18 mm 
rectangular channel 

Conversely, the slug-to-annular transition is more gradual and 
is difficult to distinguish from visual observations. This plug/ 
bubble-to-slug flow transition result is especially significant 
because it is accompanied by a local pressure-drop change. 

Typical pressure/time traces from the present study are 
shown in Fig. 5; they exhibit different characteristics corre
sponding to the different flow patterns. This is the basis for 
the methodology put forth by Weisman et al. (1979) as dis
cussed previously. While the results given in Fig. 5 are from 
a static pressure measurement (rather than a pressure-drop 
measurement), there is nevertheless general agreement with the 
criteria proposed by Weisman et al. (1979). In particular, plug 
flow is characterized by low-frequency, low-amplitude fluc
tuations, and annular flow is characterized by a higher-fre
quency, but also low-amplitude, oscillation. The slug flow 
pattern trace shows a higher-amplitude fluctuation, which 
clearly distinguishes that flow pattern from the plug and an
nular patterns. However, the slug flow pattern trace does not 
exhibit the regularly spaced peaks observed by Weisman et al. 
(1979); this might be a consequence of the small channel used 
in the present study. 

Following the direction of this pressure/time trace approach 
used in earlier work, RMS pressures in the present study were 
considered as a possible indicator of flow pattern transition. 
RMS pressures from the static pressure/time signals from 
transducer Pj are plotted as a function of mass quality x in a 
composite plot in Fig. 6; a typical individual curve is given in 
Fig. 7 for a mass flux of 500 kg/m2s. In Fig. 7, the flow pattern 
transition boundaries, obtained from visual observation, are 
also indicated. 

The curves of Figs. 6 and 7 exhibit well-defined breakpoints 
in the narrow mass quality range of approximately 0.002 to 
0.008. A breakpoint here is defined as a relatively abrupt in
crease in slope of the curve from near zero. This increase in 
the RMS value of the static pressure can be correlated with 
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the change in slope and/or local peak in the curves of two-
phase friction multiplier given in Figs. 2 and 3 and, in turn, 
with the transition to slug flow pattern. In particular, the 
pressure gradient results of Fig. 3 indicate transition to slug 
flow at a mass quality of approximately 0.002 and this value 
was constant for the higher mass fluxes tested, G>500 kg/ 
m2s. This is substantiated by the RMS pressure plot of Fig. 6. 
At the lower mass fluxes, below 500 kg/m2s, most information 
is derived from the RMS pressure results. These results show 
a change in transition quality that is inversely proportional to 
mass flux. The range of transition quality of the data is 
0.002 < X <0.008. 

Another characteristic observed in the data of Figs. 6 and 
7 is a well-defined peak that is a function of total mass flux. 
The qualities at which the peaks occur decrease with increasing 
mass flux and correlate, approximately, with the slug-to-an
nular flow transitions defined from visual observations. This 
last result is significant because the slug-to-annular flow pat
tern transition is difficult to identify visually and is not ap
parent in the pressure-drop data as given, for example, by the 
two-phase friction multiplier representation in Fig. 3. How
ever, because the transition to annular flow is rather gradual, 
it is difficult to conclusively attribute the peaks in Figs. 6 and 
7 to this transition. 
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While the results presented in this paper are focused on the 
horizontal rectangular channel oriented with the long side ver
tical, experiments were also performed with the channel ori
ented to have the long side horizontal (Wambsganss et al., 
1990). Similar results were obtained as shown in Fig. 8. 

To gain insight into possible geometry dependence of the 
phenomenon, a limited number of tests were performed with 
a small-diameter (6.35 mm) tube. Three values of mass flux 

• were tested, with the results given in Fig. 9. A comparison with 
the results from the small rectangular channel (see Fig. 6) 
reveals that the general behavior is the same for the two chan
nels with different geometry, viz., with increasing mass quality, 
a well-defined breakpoint, followed by an increase in the am
plitude of the RMS static pressure fluctuations that peaks and 
falls off. Besides the good qualitative agreement of the results, 
quantitatively the magnitude of the RMS fluctuations, as well 
as the value of the mass quality at the breakpoint (interpreted 
herein as the transition to slug flow), is also in good agreement. 
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The physical situation giving rise to the distinct character
istics of the pressure-drop curve at the higher mass fluxes tested
(02:500 kg/m2s), viz., a local peaking at the bubble-to-slug
flow transition, was considered as follows: where well-defined
bubbles exist, it is speculated that the increase in number of
bubbles, as mass quality increases, contributes to an increased
"flow resistance," and thereby an increased mean pressure,
thus accounting for the local peak in the pressure-drop curve.
Because it can be safely conjectured that bubble flow cannot
exist at a packing density greater than some maximum, when
the maximum packing density is reached, a further increase in
gas flow rate causes the bubbles to break down (collapse/
coalesce), forming slug flow. In so doing, the "pseudo flow
restriction" is effectively relieved, allowing the mean pressure
drop to suddenly decrease, thus accounting for the decrease
in pressure drop following the local peaking (see Figs. 2 and
3). At the same time, the magnitude of the fluctuating com
ponent increases (Figs. 6 and 7) as a result of the emergence
of large vapor slugs compared to the smaller and more random
vapor bubbles preceding the transition.

Well-defined bubbles do not exist at the low values of mass
flux tested (0:5 400 kg/m2s). Nevertheless, it is suggested that
a related phenomenon is involved. This is because the RMS
pressure data of Figs. 6 and 7 exhibit the same characteristics,
and the monotonic increase in friction multiplier curves with
increasing mass quality (which is interrupted at the bubble-to
slug flow transition) is similarly interrupted at the plug-to-slug
flow transition, as illustrated in Figs. 2 and 3.

Bubble packing density is directly related to void fraction.
In turn, mass quality x and void fraction O! are related as

x=SO!vL/[(I-O!)va+ SO!vLl (1)

where VL and Va are specific volumes of the liquid and vapor
phases, respectively, and S is the slip ratio (ratio of gas to
liquid phase velocities). For horizontal flow, it is reasonable
to assume that when plugs or bubbles are present they travel
at the liquid velocity; that is, S = 1. As discussed previously,
from Figs. 2 and 3 it can be observed that the peak (for 0> 500
kg/m2s) in the two-phase friction multiplier curves occurs at
a mass quality of approximately 0.002. With Eq. (1), and S= 1,
a mass quality of 0.002 corresponds to a void fraction of 0.6.
This value for a maximum packing density is judged reasonable
when compared with theoretical maximum packing densities
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For these tests, the test channel was metal and there was no
provision for visual observation of the flow patterns.

Fig. 10 Normalized RMS pressure drop as a function of Martinelli pa·
rameter; d = 2.4 mm (Fukano et al., 1989). Reproduced by permission of
the American Nuclear Society.

Discussion
Some substantiation of the characteristics of the static pres

sure fluctuations measured in this study and shown in Fig. 6
can be obtained from the data presented by Fukano et al.
(1989). Fukano et al. measured the fluctuating component of
a differential pressure signal from two-phase air/water flow
in a capillary tube (2.4 mm diameter). A coefficient was com
puted as the standard deviation divided by the time-averaged
value and presented as a function of Martinelli parameter, as
shown in Fig. 10. With increasing air flow rate and a constant
superficial liquid mass velocity, the coefficient calculated by
Fukano et al. increases, peaks in the Martinelli-parameter range
of 0.5-5, and then decreases; this behavior is similar to that
exhibited in Fig. 6. Fukano et al. noted that the maximum
values occur in the intermittent flow pattern region. However,
they did not attempt to correlate the unique behavior of the
data with specific flow pattern transitions. The breakpoints in
the data of Fukano et al. (1989) occur in a Martinelli-parameter
range of approximately 3-10; this is in good agreement with
the range of values of Martinelli parameter obtained in this
study for transition to slug flow.

Nishikawa et al. (1969) presented their RMS pressure data
as plots of RMS pressure as a function of superficial mean
velocity for constant values of superficial liquid velocity. As
such, their data can not be directly compared with the data of
this study. Nevertheless, the authors indicate the flow patterns
on selected plots and two observations can be made. First, it
is of interest to note that no distinct break in the RMS pressure
curve is exhibited at the transition to slug or froth flow. This
is in contrast to the results of the small horizontal channel
study in which a well-defined break is observed at this tran
sition. This suggests that this transition phenomenon may be
a small channel phenomenon, not exhibited in large channels.
Second, as discussed above, Nishikawa et al. observed that the
RMS values of pressure are small in the bubble and annular
flow regions and large in the slug and froth flow regions. This
observation is in qualitative agreement with the results of the
small horizontal channel study.

An examination of the photographs of the flow patterns
(typical results for a mass flux of 1000 kg/m2s are given in
Fig. 11) suggested that the physical mechanism leading to the,
increase in two-phase frictional pressure gradient as the bubble
to-slug transition is approached is directly related to an increase
in bubble packing density. This is easily envisioned by studying
the flow patterns of Fig. 11, in sequence, viz., Figs. 11 (a)
II(/). As mass quality is increased, bubble size decreases and
the number of bubbles increases to eventually fill the channel
(Figs. 11 (a)-l1 (d». When the channel is "full," the bubbles
effectively collapse/coalesce, resulting in a slug flow pattern
(Figs. l1(e) and 11(/).
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Fig. 12 Hysteresis effect associated with mass quality (o increasing 
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of a = 0.52 for spherical bubbles and a = 0.78 for pancake (flat) 
bubbles on square-oriented packing configurations. 

Taitel et al. (1980) also considered packing density in de
veloping a relationship for predicting the bubble-to-slug flow 
pattern transition for vertical two-phase flow in large pipes. 
However, it should be noted that in an earlier study (Taitel 
and Dukler, 1976), Taitel and coworkers did not consider this 
phenomenon in their development of prediction methods for 
transitions in large, horizontal pipes. For vertical two-phase 
flow, Taitel et al. (1980) in developing their transition criteria 
assumed that the transition from bubble to slug flow occurs 
when the void fraction reaches 0.25. The rationale behind 
selection of this value is that in vertical flow the upward motion 
of the bubbles is in a zig-zag path with considerable random
ness, and that prior to agglomeration or coalescence there must 
be sufficient spacing between bubbles to allow the bubbles to 
move; Taitel et al. assumed this critical spacing to be half the 
bubble radius, which leads to a void fraction of 0.25. 

This value of void fraction is considerably less than that of 
0.6 obtained in this study, using Eq. (1), an experimentally 
determined transition mass quality of 0.002, and assuming a 
slip of 1, which is reasonable for horizontal flow. In the case 
of vertical flow, the slip will not be 1 because of the buoyancy 
effects of the bubbles. If the same transition mass quality of 
0.002 is assumed for the vertical flow case, together with a 
void fraction of 0.25 (as specified by Taitel et al., 1980), and 
Eq. (1) is solved to obtain the slip required to satisfy those 
conditions, one obtains a slip value of approximately 3. This 
value does not seem unreasonable, and the exercise serves to 
alleviate concern over what might be perceived as a discrepancy 
between the results of the two studies. Further, from the pho
tographs of bubble flow given in Fig. 11, it is readily observed 
that at least for horizontal two-phase flow in small channels, 
the bubble packing is indeed very tight, i.e., the spacing is 
considerably less than half a bubble radius. Thus, the transition 
void fraction of the present study would be larger than that 
of Taitel et al. (1980), supporting a void fraction of 0.6 rather 
than 0.25. 

Hysteresis in the present data was investigated by performing 
a special test. The pressure gradient for G = 500 kg2s was meas
ured for increasing and decreasing mass quality; results are 
shown in Fig. 12. As can be observed, a weak hysteresis effect 
is indicated. 

The local pressure-drop increase at the transition to slug 
flow occurs at very low qualities and low pressure drops. Ex
periments in these parameter ranges require particular atten
tion to instrumentation and calibration. The result discussed 
here of the local increase in pressure drop at this flow transition 
has not generally been reported in the engineering literature. 
However, the results of Sadatomi et al. (1982) show an indi
cation of the peak. 

Sadatomi et al. (1982) presented their data for circular, tri
angular, and annular channels in the form of the two-phase 
friction multiplier $FL versus Martinelli parameter X. Of par-
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Fig. 13 Two-phase frictional pressure gradient in an annulus (Sadatomi 
et al., 1982). Reproduced by permission of Pergamon Press PLC. 

ticular interest is the "scatter," occurring at a value of about 
10 for the Martinelli parameter, in the data corresponding to 
two-phase flow in the annulus (Fig. 13). Sadatomi et al. suggest 
that the scatter may be due to measurement error. However, 
a comparison with the results of this study for mass fluxes 
greater than 500 kg/m2s (see Fig. 2) reveals a remarkable sim
ilarity in the two independent sets of data. Consequently, it 
appears that what Sadatomi interpreted as data scatter due to 
measurement error is, in fact, the transition to slug flow seen 
in this study. In this regard, Sadatomi's data support the cur
rent measurements. The "scatter" was not seen in the data 
for the circular and triangular flow channels. However, the 
characteristic dimension of the circular channel (diameter of 
25 mm) and of the triangular channel (height of 55 mm) was 
larger than that of the annulus (width of 7.5 mm), and, as 
such, it may be inappropriate to classify those channels as 
"small." Sadatomi also reported (with no graphic represen
tation) that the data from his rectangular channels were quite 
similar to those from his triangular and circular channels, 
which did not show the "scatter." However, it must be re
membered that Sadatomi's interpretation of the data and meas
urements was different from that in the current work, which 
used a rectangular channel. 

A second distinguishing feature in the RMS pressure-versus-
mass quality curve is the peak that occurs, for the small channel 
of this study, in the mass quality range of 0.01 to 0.1 (see Figs. 
6 and 7). With increasing mass flux, the amplitude of the peak 
RMS pressure montonically increases, while the mass quality 
at which the peak occurs appears to monotonically decrease. 
Wambsganss et al. (1991) noted that this peak correlated ap
proximately with the slug-to-annular transition as determined 
from visual observations and photographs of the flow patterns. 
However, more data and additional study will be required to 
substantiate this result. 

Conclusions 
Based on the approaches used by previous investigators of 

two-phase flow phenomena, statistics relating to the fluctuat
ing component of the measured pressure signals were analyzed 
with the objective of relating such results to flow pattern tran
sition boundaries. In particular, RMS pressures were gener
ated. When plotted as a function of mass quality, the curves 
exhibited distinct features (see Figs. 6 and 7), at least one of 
which can be directly related to a flow pattern transition. That 
feature is a well-defined increase in RMS pressure that occurs 
as mass quality is increased. For the different mass fluxes 
tested, the abrupt increase occurs in a mass quality range of 
approximately 0.002 to 0.008 and can be directly correlated 
with the plug/bubble-to-slug flow transition. This increase was 
supported by the work of Fukano et al. (1989). 

The criterion presented for the objective determination of 
the transition to slug flow is very simple and straightforward. 
Unlike methods that require expensive X-ray equipment or a 
gamma densitometer, the method is easy to implement, as it 
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requires only a pressure port, a pressure transducer, and RMS 
measurement. Further, it is effectively nonintrusive and can 
be readily applied in conjunction with phase-change heat trans
fer experiments. These features combine to make the meth
odology especially attractive. While other researchers (e.g., 
Fukano et al., 1989) have computed RMS pressure in small 
channel two-phase flows, it seems that the characteristic break 
in the curve had not previously been identified with the tran
sition to slug flow. 

The local peak in pressure drop at the bubble/plug-to-slug 
flow pattern transition' is itself not a well-documented phe
nomenon. The work of Sadatomi et al. (1982) came close to 
showing this feature for two-phase flow in a narrow annulus. 

The data used in this study are from experiments with air/ 
water mixtures in a small horizontal rectangular channel, ori
ented with the long side vertical as well as horizontal, and in 
a small-diameter tube. Supporting data are provided from the 
studies of Fukano et al. (1989), for small diameter tubes. It 
remains to be shown whether RMS pressure measurements 
made with similar flows in larger horizontal channels and in 
both small and large vertical channels, exhibit the same char
acteristics that can be correlated with the transition to slug 
flow pattern. 
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Boundary Layer Theory for a 
Particulate Suspension 
Order of magnitude considerations are employed to develop boundary layer equa
tions for two phase particle/fluid suspension flows. It is demonstrated that a variety 
of possibilities exist and three of these are examined in detail. Two are applied to 
the problem of flow past a semi-infinite flat plate. 

Introduction 
This paper is concerned with boundary layer theory for a 

particulate suspension. Given the importance of boundary lay
ers in applications, this topic has received surprisingly little 
attention. There is a history of work on the problem of the 
steady laminar boundary layer on a semi-infinite flat plate with 
recent contributions by Osiptsov (1980), Prabha and Jain 
(1980), and Wang and Glass (1988). References to earlier work 
can be found in these papers. In contrast to investigations of 
the flat plate and a few other specific geometries, there appears 
to have been little effort devoted to determining the general 
form of boundary layer equations. The present paper deals 
with this topic. 

A boundary layer order of magnitude analysis is carried out 
using a typical set of two fluid equations representative of the 
current literature. It is found that a variety of outcomes are 
possible depending on the order of magnitude assumptions 
selected. Three of the most interesting cases are singled out 
for explicit presentation. Some specific numerical results are 
then given for the problem of steady laminar boundary layer 
flow past a semi-infinite flat plate. It is shown that the bound
ary layer model employed greatly influences predictions. 

Governing Equations 
The boundary layer analysis to be described in the present 

work is based on the following typical set of two phase flow 
equations. 

W - V - ( ( l - 0 ) v c ) = O, d,4.+ V-W>vd) = 0 (1) 
represent respective balances of mass for the fluid and partic
ulate phases (with the true densities of both phases assumed 
constant). In Eqs. (1) V is the gradient operator, t is time, <j> 
is the particulate volume fraction, vc is the fluid phase velocity 
vector, and \d is the particulate phase velocity vector. 

/oc(l-</>)(d,vc + v c - W c ) = V - g c - f 

prf<M«,vd + v d - W d ) = V - £ d + f (2) 
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represent respective balances of linear momentum for the fluid 
and particulate phases (with external body forces neglected). 
In Eqs. (2) pc is the fluid true density, pd is the particulate true 
density, gc is the fluid phase stress tensor, g d is the particulate 
phase stress tensor, and f is the interphase force per unit volume 
acting on the particulate phase. The balance laws discussed 
above will be supplemented by the constitutive equations 

gc=-(\-M)pl +2Atc(l-<«Dc; D c=(vv c+W c
r ) /2 

gd = -{\<f>p + q)l +2Mrf</.Dd; D d = ( V v d + VvJ)/2 

f = pd4>yr/r + \pV<t>;\r = \d-vc (3) 
wherep is the indeterminate pressure, q is the particulate phase 
dynamic pressure, X is a coefficient which determines the ap
portionment of the indeterminate pressure gradient between 
the phases (see below), ^c and fid are dynamic viscosity coef
ficients, T is the interphase relaxation time, 4 is the unit tensor, 
and a superposed T indicates the transpose of a second order 
tensor. In general q, X, LIC, \i.d, and T are functions of such 
quantities as 4>, vr, and the invariants of Dc and Drf. 

The following brief comments about Eqs. (3) are in order. 
The forms of Eqs. (3b,c) should be such that Eq. (2b) will 
reduce to the Eulerian form of the equation of motion for a 
single particle when the volume fraction is sufficiently small. 
Angular momentum considerations do not require that g c and 
g d be individually symmetric but do require that the combina
tion a c + g d be symmetric (in the absence of body moments). 
Several particle phase stress mechanisms have been proposed. 
These include direct contact between particles, wall effects, 
local particle deformations, and the consequences of the av
eraging required to model a system containing discrete particles 
as a continuum. The precise forms of X, /nc, \s,d, and q are 
model dependent. In the present work it is not necessary to 
restrict attention to a specific model and this has not been 
done. 

The focus of the present paper is on laminar flow. The 
inclusion of Dc and Drf in the list of arguments given above 
formally allows Eqs. (3) to include algebraic turbulence models. 
It is highly doubtful, however, that such models are sufficiently 
inclusive to simulate two phase turbulence under any but the 
simplest conditions. 
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Equations (2) and (3) are representative of several models 
which have appeared in the literature such as those discussed 
by Marble (1970), Ungarish and Greenspan (1983), 
Gidaspow (1986), Ungarish (1988), Foscolo et al. (1989), Tsuo 
and Gidaspow (1990), Ham et al. (1990), Ganser and Light-
bourne (1991), Foscolo et al. (1991), and McCarthy (1991). 
These equations are, however, by no means meant to be all 
inclusive. In fact, several important phenomena (lift, added 
mass, and gravity, for example) have been purposely omitted 
in order to create a model containing only the most funda
mental two phase flow effects. It is felt that a good under
standing of this case is essential to establish a baseline for 
future studies of more complicated models. The omission of 
a given physical effect should not be interpreted as a statement 
that this effect is always negligible in boundary layer situations. 

The primary purpose of the present work is to illustrate the 
variety of boundary layer equations that can be produced by 
different order of magnitude assumptions. For this reason, 
attention will be confined herein to a relatively simple case. It 
will be assumed that the boundary layer exists on a flat wall 
and can be characterized by free stream velocity v^, pressure 
p„, and volume fraction (/>„, and a characteristic length L. It 
will further be assumed that q, fic, nd, and T are functions only 
of 4> and that X is constant (either zero or unity). Finally, 
attention will be confined to steady flow. Extension to more 
complicated cases is straightforward. 

Let x and y be respective coordinates tangent and normal 
to the surface and vc = /xc/pc and vd=\x.d/pd be kinematic vis
cosities. The Reynolds number is defined to be 

Nl=LvJvc(<j>a>)=\/e2 (4) 

Let 
x=Ls, y = tLn, p = pcv

2
a,H(s,n), q = pcvLj(<j>), </> = </>„Q(s,rt) 

yc = n»(ext/c(5,«) + eye Vc(s,n)) 

v</ = v„(exUd(s,n) + eye V^s^)) (5) 

with e denoting a unit vector. Substituting Eqs. (5) into Eqs. 
(1-3), combining the results, and rearranging leads to the equa
tions 

3,((1 - *»Q)C/C) + 9„((1 - ^Q) Vc) = 0 
(1 - ^QXUAUc + Vcd„Uc) + (1 - \<j>„Q)dsH 

+ N2<j>«,QC2(Uc- Ud) - (e\((l - KQ)C^sUc + dn Vc)) 
+ d„((l-<t>a,Q)Cld„Uc)) = 0 

e2(l - 4>»0 (UcdsVc+ Vcd„Vc) + (1 - \<t>«,Q)d„H 

+ t2N2^QC2(Vc- Vd)-e
2(t%((\ -4>„Q)C,d^) 

+ d„(0 " <t>o*Q)Q(dsUc + 2dn Vc))) = 0 (6) 

for the fluid phase and 
ds(QUd) + dn(QVd) = 0 

Q(UddsUd+ Vdd„Ud) + (KQ3JI+ C3dsQ)/N2 

+ QC2{Ud- Uc)-(e
2ds(QC,2dsUd+ d„Vd)) 

+ dn(QC4d„Ud)) = 0 

e2Q(UddsVd + Vdd„Vd) + (\Qd„H+ C3d„Q)/N2 

+ <?QC2{ Vd - Vc) - e2(e%(QC4ds + Vd) 

+ dn(QC4(dsUd + 2d„Vd)))~0 (7) 

for the particle phase. In Eqs. (6) and (7) 

Ci(Q) = vA^QVvctt*), C2(Q) = L/(vmT(^Q)) 

c3(Q) = J'(*-6), C(Q) = ^(0-e)/".**-) (8) 

are functions of the normalized volume fraction Q and 

N2 = Pd/Pc (9) 

is the true density ratio. A prime denotes the derivative of a 
function of one variable with respect to its argument. It can 
be seen from Eqs. (6) and (7) that if. X = 0 the entire inde
terminate pressure gradient is assigned to the fluid phase while 
if X = 1 it is shared between the two phases in proportion to 
their volume fractions. Both of these formulations have ap
peared in the literature. Equations (6) and (7) form the basis 
for the order of magnitude analysis to be carried out in the 
next section. 

Most of the dimensionless quantities appearing in this paper 
do not have well established names at present. A consistent 
notation has, therefore, been adopted in which all dimension-
less functions are denoted by C's and all dimensionless num
bers are denoted by TV's. It is hoped that the reader will not 
find this notation confusing. The function Ct is a measure of 
the variation of fluid phase viscosity with volume fraction. 
The function C2 is a measure of the variation of relaxation 
effects with volume fraction. It can be viewed as the ratio of 
the characteristic time L/vm to the relaxation time of a ho
mogeneous particle phase released with speed y„ in a fluid 
held at rest. Microscopic models indicate that C2 is propor
tional to the ratio of L to a characteristic particle dimension. 
While this ratio is large, the coefficient of proportionality can 
realistically take on any magnitude (depending on flow ge
ometry and flow conditions). Thus, C2 is not necessarily large. 
The function C3 plays the role of a bulk modulus of com
pressibility for the particle phase. The function C4 is a measure 
of the variation of particle phase viscosity with volume frac
tion. In some models (see, for instance, Soo (1967)) an iden
tification is made between the particle phase kinematic viscosity 
and the particle phase diffusion coefficient (see below). If this 
is done, C4 becomes the local inverse Schmidt number. 

Order of Magnitude Analysis 
Boundary layer equations are found by taking the limits of 

Eqs. (6) and (7) as e^O. This will be done herein assuming 
that d = 0(l) and C4 = O(l) (thus omitting, for the sake of 
concreteness, many interesting possibilities at the outset) but 
leaving the magnitudes of C2 and C3 arbitrary. Then the mass 
balances (6a) and (7a) remain 

9S((1 - 0»Q)[/C) + a„((l - 0 . 0 Vc) = 0 

ds(QUd) + dn(QVd) = 0; (10) 
Eqs. {6b) and (lb) yield the tangential linear momentum bal
ances 

(l-^Q)(UcdsUc+VcdnUc) 

+ (1 - MnQWsH+Ni^QC^Uc- Ud) 

-3„((l-0Oo0C1a„f/c) = O 
Q(UddsUd+ VddnUd) + (\QdsH+ CidsQ)/N2+QC2(Ud- Ue) 

-d„(QC4d„ud) = 0; (ii) 
and Eqs. (6c) and (7c) yield the normal linear momentum 
balances 

d„H+ e2N2^QC2(Vc- Vd)/(l - X4.„Q = 0 
C3d„Q + e2N2(Q(Udds Vd + Vddn Vd + C2( Vd - Vc)/(\ - X0„Q)) 

-d„(QCA(dsUd+2d„Vd))) = 0 (12) 

The terms multiplied by e2 in Eqs. (12) have been retained to 
allow for a variety of orders of magnitude of C2 and C3. Three 
interesting cases will be discussed below. 

The first situation to be considered is 
C2 = 0(1), C3 = 0(1) (13) 

Then taking the limit of Eqs. (12) as e -0 and solving the 
resulting equations yields 

H=H«,(s), Q = Qa(s) (14) 
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where H„ and Q«, are, respectively, the values of H and Q at 
the edge of the boundary layer (as determined from an inviscid 
analysis). Now Eqs. (10) and the results of substituting Eqs. 
(14) into Eqs. (11) constitute four equations in which H, Q, 
C[, C2, C3, and C4 are known functions of s and the dependent 
variables are Uc, Vc, Ud, and Vd. The equations for each phase 
closely resemble the boundary layer equations for single phase 
flow. That is the primary reason for selecting order of mag
nitude assumptions (13) for attention. 

A second situation of interest is that of 

C2 = 0(1), C3 = 0(e2) (15) 

Then the limit of Eq. (12a) can be taken as e~0 to yield Eq. 
(14a). This, in turn, renders determinate the terms in Eqs. (11) 
involving H. For convenience, let 

C3 = e2C5/N2; C5 = C 5 ( 0 = O(l) (16) 

Substituting Eq. (16) into Eqs. (116) and (126), dividing the 
latter by e2, and taking the limits as e—0 produces, respectively, 

Q(UddsUd+ Vdd„Ud) + QC2(Ud- Uc)-d„(QC4d„Ud) = 0 

Q(UddsVd + Vdd„Vd) + Csd„Q + QC2(Vd- KC)/(1-X<£„Q) 

-d„(QC4(dsUd+2d„Vd)) = 0 (17) 
Now Eqs. (10), (11a), and (17) are a set of five equations in 
which His a known function of s and the dependent variables 
are Uc, Vc, Ud, Vd, and Q. It should be pointed out that the 
particle phase normal momentum balance appears as one of 
the equations to be solved. This phenomenon (somewhat un
usual in boundary layer formulations) is also a feature of the 
dusty gas model discussed by Marble (1970) (and often em
ployed when the volume fraction of particulate material is 
expected to be small). The boundary layer theory associated 
with order of magnitude assumptions (15) can, therefore, be 
thought of as a generalization of dusty gas boundary layer 
theory to account for finite volume fractions. This is the pri
mary reason for interest in these order of magnitude assump
tions. 

The third situation to be discussed herein is that of 

C2 = 0(l /e2) , C3 = 0(1) (18) 

To avoid obtaining a singular limit under these circumstances 
one must add Eq. (11a) to <t>KN2xEq. (lib), add Eq. (12a) to 
<j>wN2xEq. (126), then take the limit of the results as e—0 to 
get, respectively, 

(1 - 4>~Q)(UAUC+ Vcd„Uc) + *J*iQtfJAUd 

+ vdd„ud) + ds(H+ j) - d„((i - ^ e ) C , 3 , y c 

+ ^N2QC,d„Ud) = 0 

dn(H+J) = 0 (19) 

where Eq. (8c) has been used. Equation (196) can be solved 
to yield 

H+J=HUs) + J(^Q«(.s)) (20) 

Making the substitution 

C2 = (1 - \<j>aQ)C3/(e
2N2C6); C6 = C6(Q) = O(l) (21) 

in Eqs. (116) and (126) and taking the limits of the results as 
e~0 yields, respectively, 

Ud= U„ Vd= Vc-C6d„(lnQ) (22) 

Substituting Eqs. (22) into Eq. (106) and the combination of 
Eqs. (19a) and (20) produces the respective results 

ds(QUc) + d„(QVc) - d„(C6dnQ) = 0 

(1 -<l>a,Q + N2<t><„Q)(UcdsUc+ VcdnUc) 

+ Hj(s) + <j>0,C3(4>«da>(s))Qj(s)-(d„m-^Q)Cl 

+ <j>^N2QCA)d„Uc) + <t>aN2C6d„Qd„Uc) = 0 (23) 

Equations (10a) and (23) are a set of three equations with 
dependent variables Uc, Vc, and Q. Once these equations have 

been solved, Ud and Vd can be determined from Eqs. (22). 
The boundary layer equations consistent with order of mag

nitude assumptions (18) represent a generalization of the usual 
convection/diffusion model of particle transport to account 
for a finite volume fraction. It is this feature that makes order 
of magnitude assumptions (18) of interest. Equations (22) are 
equivalent to the boundary layer forms of Fick's law of dif
fusion with a dimensionless diffusion coefficient C6. In par
ticular, if vc becomes constant as its argument becomes small, 
assuming <t>x«\ makes Q = 1 (from Eq. (8a)). Then Eqs. 
(10a) and (23) reduce to 

dsUc + dnVc = 0, UcdsUc + Vcd„Uc + H„'(s) - dnnUc = 0 

UcdsQ + Vcd„Q - d„(C6d„Q) = 0 (24) 

where Eq. (24a) has been used in Eq. (23a) to obtain Eq. (24c). 
Equations (24a,6) are the usual single phase boundary layer 
equations and Eq. (24c) is the usual convection/diffusion equa
tion for a passive scalar. 

It should be mentioned that the three special cases discussed 
above by no means exhaust all physically plausible possibilities. 
They were chosen both to illustrate the variety of possible 
formulations and because each has interesting features. It 
should also be recognized that the magnitude of some or all 
of the C's may vary significantly due to relatively modest 
changes in Q (see, for example, Gidaspow (1986) and Foscolo 
et al. (1991)). Under these circumstances there may be no single 
set of order of magnitude assumptions which is appropriate 
throughout the entire flow field. Then extreme care would be 
necessary in applying the concepts of boundary layer theory. 

Flat Plate Boundary Layer 

To illustrate the application of some of the equations de
veloped in the previous section, attention will be directed to 
the flow past a semi-infinite flat plate subjected to zero pressure 
gradient with its leading edge at (s,n) = (0,0). This problem 
is of both theoretical and practical interest in itself and, in 
addition, serves as a first approximation for many flow situ
ations involving ducts and wings. In this case the inviscid flow 
is simply a uniform stream characterized by 

t/c,» = £/</,» = 1, Vc,a = !V,„ = 0, H„ = 1, Q„ = 1 (25) 

Since the convection/diffusion problem associated with flow 
past a flat plate is well known, attention will be confined herein 
to the first two boundary layer formulations discussed in the 
previous section. 

First, consider a solution based on order of magnitude as
sumptions (13). Equations (14) will now read 

H=Q=\ (26) 

Substituting Eq. (266) into Eqs. (8) yields 

Cl = \,C2=\lCi = 0,CA = vd/vc=Nl (27) 

where the choice L = V„T has been used to get Eq. (276) (since 
there is no natural characteristic length associated with flow 
past a semi-infinite flat plate). Equation (276) illustrates the 
point made earlier that C2 need not be large. 

Substituting Eqs. (26) and (27) and the modified Blasius 
transformations 

s = £ / ( l - a « = (2S/(l-£))1/2 '? 

Uc=Fc(i,i), Vc = ({\~-i)/(li))y\GM,i) + r,Fc(i,ri)) 

Ud=FM,v), Vd = ((l-^/(20)l/2(Gda,r,) + r,Fd^,V)) (28) 

into Eqs. (10) and (11) yields 

a ,G c +F c + 2?( l -? )3 f F c = 0 

a,Gd + F d + 2 £ ( l - £ ) 9 ^ = 0 

dvrFc - Gcd,Fc - 2?(1 - ti)FcdsFc + 2N£(Fd - Fc)/(1 - £) = 0 

N 3 3 ,„ /v- Gdd,Fd- 2£(1 - iyFJfFt 

+ 2 f ( F c - F „ ) / ( l - O = 0 (29) 
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where 
^ 4 = ^1000/(1 - 0 t t ) = pd<Aoo/(Pc(l - 00=)) (30) 

is the particle loading. The boundary and matching conditions 
employed to solve Eqs. (29) were 

Fc(£,0) = 0, Gc(S,0) = 0 

^ 0 ) = AT5((1 -*)/(2$))1 /Vdtt,0), Gd($,0) = 0 
F ^ . ^ - l . ^ f . ^ - l a s . j - o o (31) 

where Ns is a particle phase wall slip parameter. Equation (31c) 
allows for particle phase wall slip in a manner similar to that 
used in rarefied gas dynamics. In reality the particle phase wall 
slip velocity is controlled by a variety of physical effects such 
as sliding friction, rolling friction, the nature of particle/sur
face collisions, particle shapes, etc. It is not possible to model 
such effects with precision at present, but by adjusting the slip 
parameter Ns it is at least possible to produce a wide variety 
of wall slip profiles. Equations (31c,d) should be dropped if 
particle phase viscosity is omitted from the model. 

For the subsequent presentation of numerical results it is 
convenient to define the respective skin friction coefficients of 
the fluid and particulate phases as 

CM) = d„F&,0), « O = JV3a/^,0) (32) 
and the respective displacement thickness coefficients of the 
fluid and particulate phases as 

Actt)= (l-FM,v))dr,,AM)-- r (l-FM,v))dri 

(33) 

These parameters were selected (from many available) to il
lustrate parametric trends. 

Numerical solutions of Eqs. (29) subject to Eqs. (31) were 
computed using an extension of the methodology described by 
Blottner (1970) to two phase flow. Some typical results are 
presented in Figs. 1-6. For these calculations Ns was taken to 
be zero, thus eliminating particle phase wall slip. 

Figures 1 and 2 show representative tangential velocity pro
files. They illustrate the transition from frozen to equilibrium 
behavior which is a characteristic of two phase flows. Near 
£ = 0 the effect of interphase drag is negligible and each phase 
moves independently of the other (frozen flow). Near £ = 1 
the effect of interphase drag dominates and both phases move 
with the same speed (equilibrium flow). This type of transition 
is not confined to boundary layer flows but appears, in one 
form or another, in a variety of two phase flow situations. 

Figures 3-6 present typical distributions of the displacement 
thickness and skin friction coefficients. To allow a transition 
from fluid/fluid behavior at small volume fractions to fluid/ 
solid behavior at volume fractions close to maximum packing 
requires a particle phase viscosity function which increases 
rapidly with volume fraction. According to this interpretation, 
the results corresponding to the larger values of iV3 can be 
thought of as representing finite volume fraction situations. 

It was possible to obtain numerical solutions to Eqs. (29) 
without difficulty for all parametric combinations attempted. 
The results presented in Figs. 1-6 are representative of these 
computations. 

Second, consider a solution based on the order of magnitude 
assumptions (15) and the further assumptions 0 « 1 , pd/pc»1, 
and A = 0 (inherent in the dusty gas model discussed by Marble 
(1970)). Then making the normal assumptions that ec(0), vj^>), 
T(0) and J' (0) approach constants as their arguments approach 
zero (in Eqs. (8) and (16)) leads to Eqs. (21a,b,d) and 

C5 = J7e2 = iVf, (34) 

Using the assumptions mentioned at the beginning of this par
agraph and substituting Eqs. (26«), (21a,b,d), (28), and (34) 
into Eqs. (10), (11a), and (17) yields 
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9„GC + FC + 2«(1 - 5 ) 3 ^ = 0 
(.d,Gd + Fd + 2^l-^)diFd)Q+GddvQ + 2^1-^Fdd(Q = 0 

3„FC - GJ^ - 2«1 - H)Fcd(Fc + 2N^Q(Fd-Fc)/(\ - f) = 0 
Ntf^+dfin Q)d„Fd)- GdVv-2£(1 -H)Fdd(Fd 

+ 2!;(Fc-Fd)/(l~O = 0 

N3(2id„Gd+ a„(ln0d„Gd) + 3d,Frf+ d„(lnQ)Fd 

+ 2f (1 - 0 ( 6 ^ + 3£(ln Q)dnFd)) - GddvGd - 2£(1 - OF&G,, 

+ i,*S + 2«GC- Grf-iV6a,(lnQ))/(l - $) = 0 (35) 
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where Eq. (30) for the particle loading now assumes the small 
volume fraction form JV4 = $BN\ = 0(1). Equations (35) are 
to be solved subject to boundary and matching conditions (31) 
supplemented by 

G&,ri)~G&,v), Qtf,n)~l as n~o= (36) 
The dusty gas equations follow from Eqs. (35) by equating 

7V3 and N6 to zero. Thus, Eqs. (35) generalize the dusty gas 
equations to allow for particulate phase stresses while retaining 
the small volume fraction assumption. 

In contrast to the well-behaved nature of Eqs. (29), no com
bination of the parameters JV3, N4, N5, and N6 was found for 
which a numerical solution to Eqs. (35) exhibited a positive 
bounded Q throughout the flow field. This phenomenon has 
already been observed by Osiptsov (1980), Prabha and Jain 
(1980), and Wang and Glass (1988) in their work using the 
dusty gas equations (JV3=/V6 = 0) where Q always became in
finite in the vicinity of £ = 0.5. For all solutions attempted 
in the present work it was found that Q would either become 
extremely large or become negative somewhere in the range 
0 < £ < 1. Many parametric combinations were tried without 
success. 
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Fig. 7 Particle phase normalized wall volume fraction versus position 

The addition of a fictitious diffusion term NndmQ to the 
right-hand side of Eq. (35Z?) (and the imposition of an asso
ciated boundary condition d,g(£,0) = 0) was found to control 
the behavior of Q (as previously reported in a different context 
by Ungarish and Greenspan, 1983). This device was employed 
to obtain numerical solutions which could be used to illustrate 
the behavior observed. Some typical results are reported in 
Figs. 7-10. 

Figures 7 and 8 present computations based on the dusty 
gas model. Figure 7 shows the approach of the wall volume 
fraction to singular behavior in the vicinity of £ = 0.5 as the 
fictitious diffusion coefficient N7 is reduced. For N7 - 0 a 
continuous solution could not be found. Figure 8 exhibited 
corresponding values of the fluid phase skin friction coeffi
cient. It can be seen that this quantity is only weakly influenced 
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Fig. 8 Fluid phase skin friction coefficient versus position 
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Fig. 9 Particle phase normalized wall volume fraction versus position 

by the value of N-,. This is typical of the behavior of all quan
tities other than Q. 

Figures 9 and 10 show results which illustrate the influence 
of particle phase stresses. For these calculations a small value 
of Ns was used, thus eliminating particle phase wall slip except 
in the immediate vicinity of the plate's leading edge. Figure 9 
indicates the formation of a singularity in the wall volume 
fraction near the leading edge as 7V7 reduced. For iV7 = 0 no 
solution was found. As in the situation discussed in the previous • 
paragraph, the volume fraction was the only quantity found 
to be strongly affected by the value of 7V7. This is illustrated 
by Fig. 10 in which the fluid phase skin friction coefficient is 
chosen as representative. 

As mentioned previously, many important physical effects 
have been omitted from the model employed herein. Some of 
these may have an effect on the signular behavior reported 
above. This matter deserves to be pursued but was felt to be 
beyond the scope of the present work which was to discuss the 
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Fig. 10 Fluid phase skin friction coefficient versus position 

structure of two phase boundary layer equations rather than 
give exhaustive results for a specific problem. (It should be 
mentioned that a few preliminary calculations indicated that 
the inclusion lift forces did not affect the existence of singu
larities.) 

The singular behavior observed is probably indicative of the 
formation of a packed bed of particles (see, for instance, Soo, 
1967) or a particle free zone (see, for instance, Young and 
Hanratty, 1991) near the plate surface. To predict either of 
these phenomena would require a model capable of dealing 
with the entire range of volume fractions. Since Eqs. (35) are 
based on the assumption that the volume fraction is small, it 
would appear better to base boundary layer calculations on a 
set of equations which allows for a finite volume fraction and 
to investigate effects omitted from the present model in that 
context. All that can be said with certainty at this point is that 
Eqs. (35) do not appear to admit self consistent solutions for 
the flat plate problem. 

In the present work the term multiplied by JV7 was treated 
as a purely mathematical device employed to achieve the com
putational goal discussed above. It is referred to, therefore, 
as a fictitious diffusion term. It is interesting, however, to 
speculate on potential physical interpretations of this term. 
Some discussion of this matter is contained in the next two 
paragraphs. 

It is possible that Figs. 7 and 9 are indicative of the strongly 
discontinuous behavior which can be exhibited by a medium 
devoid of pressure (see, for example, Kraiko, 1979, 1982). If 
so, fictitious diffusion could be interpreted as a device to smooth 
these discontinuities. This issue, while beyond the scope of the 
present work, is an interesting one which deserves to be pur
sued. 

The effect of fictitious diffusion is to interest for two ad
ditional reasons. First, many numerical methods employ ar
tificial diffusion either directly or indirectly (by upwind 
differencing, for example). It is possible, therefore, that such 
numerical methods could produce a bounded continuous so
lution to the problem of steady flow past a flat plate when, 
in fact, none should exist. Second, many two phase turbulence 
models (see, for example, Pourahmadi and Humphrey, 1983; 
Elghobashi et al., 1984; Chen and Wood, 1986; and Rizk and 
Elghobashi, 1989) contain diffusion terms in the particle phase 
mass balance. It is possible that the presence of such terms is 
critical to the existence of solutions in these models. 

The results presented in this section show that physically 
plausible changes in fluid/particle suspension models can lead 
to significant qualitative (not just quantitative) changes in pre
dictions. This makes clear the need for pertinent experimental 
data which can be used for model verification. The present 
authors were unable to locate any experimental work in the 
literature dealing with laminar flow of a particulate suspension 
past a flat plate. Such information, when it becomes available, 
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will be quite useful in deciding the most fruitful directions for 
extension of the work reported herein. 

Conclusion 
In this paper the issue of developing boundary layer equa

tions for fluid/particle two phase flows was addressed. It was 
shown that a variety of possibilities exist. This is, of course, 
a manifestation of the fact that the number of dimensionless 
parameters required to characterize the behavior of a two phase 
system is considerably greater than that required to characterize 
a single phase system. Three specific examples of boundary 
layer equations were given and related to previous work. Nu
merical solutions to the problem of flow past a semi-infinite 
flat plate subjected to zero pressure gradient were given based 
on two of the boundary layer formulations developed. It was 
shown that the predictions associated with the two formula
tions were quite different. 

The present work was confined to plane steady flow past a 
flat surface. It is believed, however, that the basic findings 
reported herein are also relevant to flows involving such phe
nomena as unsteadiness, three dimensionality, and surface cur
vature. In addition, the results of this investigation should be 
directly applicable to other thin layer flows such as those oc
curring in ducts, jets, and wakes. 
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Numerical Simulation of Heavy 
Particle Dispersion—Scale Ratio 
and Flow Decay Considerations 
Lagrangian statistical quantities related to the dispersion of heavy particles were 
studied numerically by following particle trajectories in a random flow generated 
by Fourier modes. An experimental fluid velocity correlation was incorporated into 
the flow. Numerical simulation was performed with the use of nonlinear drag. The 
simulation results for glass beads in a nondecaying turbulent air showed a difference 
between the horizontal dispersion coefficient and vertical dispersion coefficient. This 
difference was related to the differences of both the velocity scale and the time scale 
between the two direction. It was shown that for relatively small particle sizes the 
particle time scale ratio dominates the value of the diffusivity ratio. For large 
particles, the velocity scale ratio reaches a value of l/\[2 and thus fully determines 
the diffusivity ratio. Qualitative explanation was provided to support the numerical 
findings. The dispersion data for heavy particles in grid-generated turbulences were 
successfully predicted by the simulation when flow decay was considered. As a result 
of the reduction in effective inertia and the increase in effective drift caused by the 
flow decay, the particle dispersion coefficient in decaying flow decreases with down
stream location. The particle rms fluctuation velocity has a slower decay rate than 
the fluid rms velocity if the drift parameter is large. It was also found that the drift 
may substantially reduce the particle rms velocity. 

1 Introduction 
Heavy particles are any small passive particles in the flow 

with a density much larger than the density of the fluid. Heavy 
particles have a free fall velocity that is of the order of the 
fluid rms velocity. We are interested in the dispersion process 
of heavy particles when suspended in and driven by turbulent 
flows. A knowledge of heavy particle dispersion is beneficial 
for improving energy conversion and reducing pollution. La
grangian statistical quantities, calculated by following the ran
dom motion of a solid particle, are needed to understand the 
dispersion process, but they are difficult to obtain experimen
tally. However, numerical simulation can provide this infor
mation by tracking particles through a simulated turbulent 
flow. Since numerical simulation has a different set of limi
tations than a theoretical analysis, it can sometimes be used 
to test the applicability of analytical results. In this paper, we 
report on the results of a simulation of particle dispersion. 
Particular attention is paid to ratio of horizontal to vertical 
scales and effect of flow decay. 

We consider the dispersion of heavy particles by turbulence, 
assuming the particulate phase mass loading is low and, there
fore, the particles do not alter the flow. Earlier analytical 
approaches (Yudine, 1959; Csanady, 1963; Meek and Jones, 
1973) have shown that the drift velocity of a particle due to 
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an external body force greatly reduces the particle dispersion. 
The drift is also found to cause nonisotropic dispersion. Par
ticles disperse more in the direction parallel to the drift velocity 
(the vertical direction) than in the directions normal to the 
drift (the horizontal directions). This is known as the continuity 
effect (Csanady, 1963). Reeks (1977), Pismen and Nir (1978), 
Nir and Pismen (1979) have simultaneously considered the 
effect of the particle inertia and the drift on the dispersion. 
However, their work has been limited to small particles for 
which Stokes' drag force applies, and to homogeneous, iso
tropic turbulence. 

Particle dispersion in grid-generated turbulence has been 
experimentally measured by Snyder and Lumley (1971), Wells 
and Stock (1983), and Ferguson (1986). The experimental work 
qualitatively confirms the theoretical predictions. The grid-
generated turbulence, while being the simplest experimental 
turbulent flow, is not homogeneous in the mean flow direction, 
since the turbulence decays due to viscous dissipation. Ap
proximate quantitative comparison between the experimental 
data and the analytical predictions is possible by making a 
quasi-stationarity assumption (Nir and Pismen, 1979). Particle 
dispersion can also be predicted by direct numerical simulation 
(Riley and Paterson, 1974; Ueda et al., 1983, and Squires and 
Eaton, 1990), but this method is prohibitively time consuming 
and is limited to flows of low Reynolds numbers. 

Kraichnan's method (1970) for simulating turbulence using 
Fourier modes is physically sound and computationally effi
cient. It is especially useful for particle dispersion studies since 
a large number of particle trajectories have to be computed. 
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This turbulence-simulation method has been used to test the 
analytical results of particle dispersion obtained by Eulerian 
direct interaction (Reeks, 1980) and to study the effect of Basset 
history force on particle dispersion (Reeks and McKee, 1984). 
The same model was used by Ferguson (1986) to simulate the 
effect of fluid continuity on heavy particle dispersion and by 
Maxey (1987) to calculate the average settling velocity of par
ticles in a turbulent flow. Turfus and Hunt (1986) extended 
the model to inhomogeneous turbulence by adding an irro-
tational velocity field. The model has the potential to include 
the advection of small eddies by large eddies (Fung et al., 
1992). Recently, Ounis and Ahmadi (1989) employed Kraich-
nan's model to study the relative importance of various forces 
acting on a solid particle and to find Lagrangian velocity mo
ments. Wang and Stock (1992) studied the effect of nonlinear 
drag on the particle dispersion using the same numerical sim
ulation techniques. They found that the nonlinear drag must 
be considered when calculating particle dispersion if the ratio 
of the drift velocity to the fluid rms fluctuating velocity is 
greater than two. They also compared the results of numerical 
simulations to those of an analytical calculation based on the 
second order iteration technique (Reeks, 1977). Among these 
studies, only Ounis and Ahmadi (1989) tried to compare the 
simulation results with experimental data. 

The purpose of this study was to use numerical simulations 
based on Kraichnan's method to help us understand experi
mental data for heavy particle dispersion in the grid-generated 
turbulent flow (i.e., the data of Snyder and Lumley, 1971; 
Wells and Stock, 1983; and Ferguson, 1986). Particular at
tention was paid to the following two questions: 1) How does 
the diffusivity ratio (the ratio of particle dispersion coefficient 
in the horizontal direction to that in the vertical direction) 
change with particle size for glass beads in typical wind tunnel 
turbulence and how is the dif fusivity ratio related to the velocity 
scale ratio and the integral time scale ratio? 2) What is the 
effect of the flow decay on the dispersion of heavy particles? 
The answer to the first question will help clarify the results of 
Ferguson (1986). The answer to the second question will allow 
us to compare the simulation results with the experimental 
data. 

The paper is organized as follows. First, Kraichnan's model 
of turbulence generation is extended to allow various fluid 
velocity correlations to be used. Some programming techniques 
necessary for large drift velocity are then discussed. The results 
of numerical simulation for long-time dispersion statistics for 
glass beads in nondecaying turbulence are reported in Section 
4. In Section 5, flow decay is considered and comparisons are 
made between the simulation results and the experimental data 
(Synder and Lumley, 1971; and Wells and Stock, 1983). 

2 Structure of Simulated Turbulence 
The flow field was represented by the following equation 

which is a linear superposition of a large number of Fourier 
modes with random amplitudes and phases (Kraichnan, 1970) 

N 

Uj(xht)/u0=Yi ibf^cosf.k^-x + os^t) 

+ c}'nsm(k""-x + o>'">t) .,(")/ (1) 
Here N is the number of Fourier modes and w0 is the rms 
fluctuation velocity. The mean velocity is zero, and the velocity 
field is understood to represent the velocity field in a frame 
of reference moving with the mean velocity of the flow (moving 
Eulerian frame or mE). For each n, values of k[n), £2"', 
k\n), and co'"' are chosen independently with probability den
sity functions (pdf) Pu(/ci), P\i{k2), Pi 3(̂ 3) and P2(co), re
spectively. Real coefficients b\n) and c\n) are independent 
Gaussian random variables which have been filtered such that 
b("> • k ( " ) and c("> • k ( " ' vanish, to make the overall flow field 
incompressible. The ensemble averaged two-point correlation 
for this random flow field is (Maxey, 1987) 

Rij{r,T)/ul =NL/*I. dw 

xP11(A:1)P12(A:2)P13(A:3)P2(co)r2(A:1, k2, k3, co) 

V 
KjKj 

cos(k-r + uT). (2) 

where r(Ari, k2, kit co) is the scaling function. 

Nomenclature 

bj, Cj = random coefficients 
dp = diameter of particle 

D(T) - one-point fluid velocity 
correlation in the moving 
Eulerian frame 

E(k) = scalar energy spectrum 
function 

/ = ratio of drag coefficient to 
Stokes drag 

/(/•) = fluid longitudinal spatial 
velocity correlations 

g(r) = fluid transverse spatial ve
locity correlation 

F(a>) = frequency spectrum 
q = external body force acting 

on particle 
k = wave number 

ka = characteristic wave num
ber 

Lf = integral length scale of 
/ ( r ) 

M = grid spacing 
N = number of Fourier modes 

Pi;(ki) = probability density func
tion of k-, 

Ri 

p 2 («) 

r 
ijir.r) 

Re„ 
St 

t 
T 
u 

«o 

U 
V 

Vio 

Vd 

VdO 

X 

Xo 

y 
«(*/) 
(3(co) 

= probability density func
tion of co 

= space separation 
= fluid velocity correlation 
= particle Reynolds number 
= Stokes number 
= time 
= integral time scale 
= flow velocity 
= fluid rms fluctuation ve

locity 
= mean flow velocity 
= particle velocity 
= particle rms fluctuation 

velocity 
= particle Stokes velocity = 

= particle drift velocity in 
still fluid 

= Eulerian coordinate 
= virtual origin of the grid-

generated turbulence 
= particle's location 
= see Eq. (4) 
= see Eq. (5) 

«y = 
^ = 

7 = 

r = 
p = 
p = 

PP = 
7 = 

Ta = 

CO = 

co0 = 

Superscript 

U) = 

Subscripts 
1 or 11 = 
3 or 33 = 

fE = 
/ = 

L = 
mE = 

Kronecker delta 
particle dispersion coeffi 
cient tensor 
vd/u0 

scaling function 
fluid viscosity 
fluid density 
particle density 
time delay 
particle aerodynamic re
sponse time 
frequency 
characteristic frequency 

s 

y'th mode 

horizontal direction 
vertical direction 
fixed Eulerian 
/th component 
Lagrangian 
moving Eulerian 
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Fig. 1 Velocity correlations computed from the simulated turbulence 
with finite-modes (W = 80), compared to the exact forms in Case 1.1800 
realizations are used. 

For homogeneous isotropic turbulence, the flow structure 
can be represented by the two functions, D{r) and E(k), (Wang 
and Stock, 1988). D(j) is the one point velocity correlation 
and E(k) is the scalar energy spectrum. For the sake of sim
plicity, the scaling function is assumed to have the following 
form, 

Nr\khu) = a(ki)m. (3) 
Further, the product of a(ki)Pn(kl)Pn(k2)Pi3(ki) is chosen 
(this can always be done) to be a function of k only, where 

k = -\J (kj + kl + kj). Then the spatial energy spectrum is de
termined by a(ki) and pdf's of wave number k\") as 

E(k) = 4™2.A:2P11(£1)JP12(A:2)P13(A:3)a(A:/). (4) 

The frequency spectrum (the Fourier transform of D{j)) is 
related to /3(o>) and the pdf of o>(n) by 

F(o>) =1 f 
7T J 0 

Z>(T)COS(COT)C?T = /3(co)P2(a>). (5) 

The flow structure is prescribed by giving E(k) and D{j) and 
the scaling function T is specified as 

1 E(k) F(w) 
m-,co) = 

N 47ru2
0k

2Pu(kl)Pl2(lc2)Pi3(k3) P2{u>) 
(6) 

In other words, the scaling function Y can be adjusted, ac-' 
cording to the probability density functions of random num
bers, to produce the proper Eulerian flow statistics. The choice 
for the pdf functions is not unique but is made to ensure a 
rapid convergence of fluid velocity correlations (or spectrum 
functions) for the simulated turbulence. 

In all the previous papers (Maxey, 1987; Ferguson, 1986; 
Ounis and Ahmadi, Wang and Stock, 1992), the pdf functions 
are assumed to be Gaussian distributions with the scaling func
tion T of the form 

It follows that the spectrum function arid the correlation func
tion are 

k2' ul k* 
EW^kjexn-2k2

0 
(8) 

i?(T) = e x p ( - ^ 7 2 / 2 ) . (9) 

The random velocity field with this structure will be referred 
to as Case I turbulence. The longitudinal and transverse fluid 
spatial velocity correlations,/(/•) and g(r), can be derived from 
(8) and are 

/(/•) = exp(-A:§/-2/2), (10a) 

g(r) = (l- -k2
0r

2/2)exp(- •klr1/!). (106) 
In the simulation, a finite number of Fourier modes, N, was 

used for one realization of the flow. A separate flow realization 
was used to calculate each particle trajectory. 

The fluid velocity correlations can be accurately reproduced 
by the simulated turbulence. Figure 1 shows the velocity cor
relations calculated from the simulated flow by averaging over 
1800 flow realizations with 7V=80 for each realization. They 
all compare well to their exact forms. 

The structure of many real turbulent flows is not described 
by Eqs. (8) and (9). Theoretically, the above simulation method 
can be used to generate flow fields with any turbulence struc
ture functions by choosing proper pdf functions for the random 
numbers and proper scaling function. To show this and test 
how the shape of the correlation curves may affect particle 
dispersion, we introduce the following forms for the energy 
spectrum and the one-point Eulerian velocity correlation, 

-> 2 , 4 

E(k) = '2^klll+k2/(4kl)f' ( U ) 

D(T) = cos(co07")exp( - U0T) (12) 
We will refer to the random velocity field with such a spectrum 
and correlation function as Case II turbulence. Consequently, 
the spatial velocity correlations are 

/ ( r) = ( l + 2 V ) e x p ( - 2 V ) , (13«) 
g(r) = (l+2k0r-2klr2)exp(-2k0r). (136) 

The above forms of the temporal and the spatial velocity cor
relations have appeared in the literature (Townsend, 1976; 
Calabrese and Middleman, 1979; and Gouesbet et al., 1984). 

To generate Case II turbulence, we need to select the proper 
pdf functions, P\i(k{) and P2(co). When Gaussian distributions 
were used, the velocity correlations of the simulated flow were 
found to converge very slowly to the prescribed forms. The 
convergence was slow because the resulting scaling function 
was extremely large for large wave numbers (or frequencies), 
thus, the large wave numbers can not be quickly realized in 
the simulation. To avoid this, we used the Cauchy distribu
tions, 

Pu(ki) = -
1 

irk0 
kl 

1 + J I 

P2(co) = -
7TC00 ~~2 

0)0 

(14«) 

(146) 

Figure 2 shows the comparison between the velocity correla
tions obtained directly from the simulated flow and the exact 
forms. The comparison is satisfactory when 1800 realizations 
of 80 Fourier modes were used. 
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Fig. 2 Velocity correlations computed from the simulated turbulence 
with finite-modes (N = 80), compared to the exact forms in Case II. 1800 
realizations are used. 

Comparing Case I turbulence and Case II turbulence, we 
find both spectrum functions, (8) and (11), achieve their max
imum values at k = 2ka, but (11) has a relatively larger fraction 
of turbulence energy in the higher wave number portion. The 
integral length scales fo r / ( r ) are: Lf= 1.2533/fc0 for Case I, 
Lf= l/k0 for Case II. The one-point velocity correlations, (9) 
and (12), have very different curvatures at T=0. (12) has neg
ative loops for large decay time while (9) gives positive cor
relation for all T. The integral time scale for D(r) are: 
r m E = 1.2533/coo for I, TmE = 0.5/w0 for II. The integral scales, 
TmE and Lf, were set to the same value for the two cases so 
that results based on the two turbulences could be compared. 

The simulated flow is governed by three parameters, i.e., 
"o. TmE (or co0), andL/(or k0). They are constant for a stationary 
(nondecaying) flow. If flow decays, they will change with time. 

3 Programming Techniques 
Some programming techniques used to ensure a successful 

simulation of the motion of heavy particles are discussed in 
this section. In our earlier paper (Wang and Stock, 1992), the 
equations of motion of a heavy particle 

dv, (ui(y,t)-Vi)f 

dt Ta 
+ q&n, 

dy>_ 
dt 

= Vi, 

(15) 

(16) 

were numerically integrated by Hamming method, and the 
particle velocity, Vj(t), and location, y-,{t), were used to cal
culate the velocity correlations and mean square dispersions. 
Here q is the body force per unit mass, T„ is the aerodynamic 
response time based on the Stokes drag. The factor / is the 
ratio of nonlinear drag coefficient to Stokes drag and is well 
represented for Reynolds number up to 1000 by the empirical 
relation (Rowe, 1961) 

where Re^ is the particle Reynolds number. f/ra can be viewed 
as the drag force per unit mass per slip velocity acting on a 
moving particle. 

When the drift parameter y = qTa/u0 is large, the mean ve
locity of the particle in the vertical direction is much larger 
than the fluctuating velocity of the particle. Since the mean 
velocity was not known a priori, the computation of particle 
velocity correlations involved subtracting two large numbers, 
the mean square of particle velocity and the square of the mean 
velocity. The same situation is found when the mean square 
dispersion in the vertical direction is calculated. Therefore, for 
accurate results a very small time step size must be used. 

To circumvent this difficulty, we can solve for the particle 
velocity relative to its drift velocity in still fluid vd0, 

Vi(t) = Vj(t)-di3Vd0. 

frfo is determined a priori from, 

"o 
1+0.15 pdpVdo 

= 7-

(18) 

(19) 

The drift velocity of a particle in the simulated turbulent flow 
is slightly larger than vd0 (Maxey, 1987), but the difference 
between the true drift and vd0 can be safely neglected (Wang 
and Stock, 1992). Therefore, the mean of v( (t) should be close 
to zero. From (15) and (18), v[ (t) satisfies the following equa
tion, 

dv,'(f) iu,(vdtf,3t+yi'(t),t)-v,') 
f(\u-Vd<$n-v'\) 

dt ra 

- ! vd0f(Iu- vd0bn-v'\) + yu0]8i3/Ta. (20) 

The last term of (20) is very small due to Eq. (19). yf (t) is 
the particle displacement relative to the mean location of par
ticle in still fluid, 

y((.t)=y,{t)-8nvdot. (21) 

The relative displacement is given by 

dyl (/) 
dt = «/(0 (22) 

/ = 1+0.15 Re] 0.687 (17) 

Now Eqs. (20) and (22) are solved simultaneously instead of 
(15) and (16). the Lagrangian velocity correlations and mean 
square dispersion are calculated from the relative velocity and 
relative displacement. This change avoids subtracting two large 
numbers and improves the accuracy of the results. Using the 
new set of equations, we found that, in the case of large particle 
drift velocity, the strict requirements for time-step size noted 
in the earlier paper (Wang and Stock, 1992) can be substantially 
relaxed. 

A second improvement in the program was to numerically 
integrate Eqs. (20) and (22) for a sufficiently long time so that 
about 10 realizations of particle Lagrangian velocity correla
tions were obtained from each realization of the flow field. 
This technique can only be used for nondecaying flow and was 
found to reduce the effect of initial conditions on the results. 
Most of the results for nondecaying flow were obtained using 
500 realizations of the random flow field with each realization 
providing 10 independent trajectories. 

4 Scale Ratios in a Nondecaying Flow 

4.1 The Continuity Effect. Particle dispersion coefficient 
is not isotropic due to the continuity effect, even if the carrying 
flow is isotropic and homogeneous. The particle dispersion 
coefficient in the horizontal direction (normal to the drift) is 
less than the particle dispersion coefficient in the vertical di
rection (parallel to the drift). For a large drift velocity, the 
ratio of the horizontal dispersion coefficient to the vertical 
dispersion coefficient approaches one half (Csanady, 1963). 
The particle rms fluctuation velocity (the velocity scale) and 

Journal of Fluids Engineering MARCH 1994, Vol. 116/157 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



u. 
UJ 
o o 

I 
I 

PARTICLE SIZE ( fJLm ) 

Fig. 3 Dispersion coefficients normalized by ta=TmEUo as a function 
of particle size. cz is the dispersion coefficient in the vertical direction, 
and ty is the dispersion coefficient in the horizontal direction. 

the particle velocity-correlation time (the time scale) in the 
horizontal direction are also less than their respective values 
in the vertical direction (Reeks, 1977). Since the long-time 
dispersion coefficient is equal to the product of the velocity 
scale squared and the time scale, the diffusivity ratio, en(°°)/ 
€33(°°). is related to the velocity scale ratio, v^/v^, and the 
time scale ratio, Tu/T33, by 

efsO) \V30J Ti3 

where the subscript 1 (or 11) refers to the horizontal direction, 
and the subscript 3 (or 33) refers to the vertical direction. 

Recently, Ferguson (1986) studied the continuity effect, us
ing both numerical simulation and experimental measure
ments. His main consideration was the diffusivity ratio. His 
measurements showed the diffusivity ratio was close to one 
for 29 /xm glass beads and the diffusivity ratio was close to a 
half for 62 /im glass beads. The experiment was not complete 
in the sense that the velocity scale ratio and time scale ratio 
were not considered. His simulation results verified the con
tinuity effect on the diffusivity ratio and also showed that both 
the velocity scale ratio and time scale ratio were less than one. 
However, no comparison was made between his simulation 
and his measurements. 

We can use numerical simulation to determine how the dif
fusivity ratio, the velocity scale ratio, and time scale ratio 
change with particle size for glass beads in grid-generated tur
bulence. In a real grid-generated turbulence, the flow scales 
change with time, so do the particle velocity scale and time 
scale. We postulate, however, that flow decay does not play 
a significant role in the scale ratios and diffusivity ratio. Based 
on this postulation, the scale ratios were simulated using a 
stationary (nondecaying) flow. Not considering flow decay in 
this section also facilitates the interpretation of results. To 
make possible a comparison between simulation results and 
Ferguson's experimental data, we used in the simulation the 
flow scales from the center of the test section in Ferguson's 
(1986) grid-generated turbulence. The flow scales were (see 
Appendix): u0= 11.2 cm/s, rmE = 0.225 s, !•/= 1.75 cm. Both 
Case I turbulence and Case II turbulence were considered in 
this simulation. 

4.2 Simulation Results. We consider the dispersion of 
glass beads (pp = 2600 kg/m3) in turbulent air under the normal 
gravity. The fluid viscosity is 1.8x 10"5 kg/m-s and the fluid 
density is 1.14 kg/m3. With the above flow scales, the Stokes 
number, drift parameter, and particle Reynolds number are 
given as a function of particle size in micrometers by, 

St = ra/rmE = 3 . 5 6 x 1 0 - ^ , (24) 
y = Taq/u0 = 1.04xlO-4d2

p, (25) 

Fig. 4 

PARTICLE SIZE ( /Am ) 

Ratio of horizontal dispersion to vertical dispersion 

Rep = 7.1xl0~3 u — v 
wo 

(26) 

Figure 3 shows the simulation results for particle diffusiv-
ities, normalized by TmEul, as a function of particle size. The 
long-time particle diffusivity was calculated from the mean 
square dispersion curves. When the particle size approaches 
zero, the heavy particles reduce to fluid elements and the nor
malized particle diffusivities are the same in both vertical and 
horizontal directions and equal to TL/TmE. TL is the fluid 
Lagrangian correlation time. From Fig. 3, TL/TmE is 0.35 for 
Case I turbulence and 0.37 for Case II turbulence. The slight 
difference in TL/TmE between the two turbulences is due to 
the different shapes of fluid velocity correlations. The effect 
of the shape of fluid correlations on the particle dispersion 
coefficient tends to disappear as the particle size increases. The 
ratio TL/TmE for Case I turbulence is about the same as the 
value predicted by the second-order-iteration approximation 
(Wang and Stock, 1992). 

Interestingly, the dispersion coefficients increase slightly with 
particle size when particle size is small. Since TmE> TL in our 
simulation, the particle dispersion coefficient should increase 
with the inertia parameter in the absence of the drift (Reeks, 
1977). On the other hand, the increase of the drift tends to 
reduce the particle dispersion coefficient due to the crossing 
trajectory effect. Because both the inertia and the drift increase 
with particle size, we have here the competing effects of inertia 
and drift on the particle dispersion coefficient. Our results 
imply that the inertia dominates the particle dispersion coef
ficient for the small size region. The dispersion coefficients 
reach maximum values at dp = 20 /xm, this is where the crossing 
trajectory effect offsets the inertia effect. Further increase in 
particle size causes rapid decrease in the particle diffusivities 
since the crossing trajectory effect controls the particle dis
persion. 

The diffusivity ratio is shown in Fig. 4. It decreases with 
particle size and approaches one half. The ratio is larger in 
Case I turbulence than in Case II for small particle size, but 
the opposite is true for large particle size. Nevertheless, the 
difference is very small. At dp = 62 /xm, our simulation predicts 
a ratio of 0.61 ±0.03, which is in rough agreement with the 
measured value of 0.48±0.11 (Ferguson, 1986). 

The results for the time scale ratio and velocity scale ratio 
are more interesting (Fig. 5). The velocity scale ratio is very 
close to one for particle size up to 30 /xm, which implies that 
particles respond to flow oscillations equally well in the hor
izontal direction as compared to the vertical direction for small 
particles. But as particle size goes beyond 40 tim, the velocity 
scale ratio drops very quickly with increasing particle size and 
reaches 1A/2 for large particles. The time scale ratio decreases 
with particle diameter for small particles and has a minimum 
value at dp = 60 /xm. However, it increases with particle di
ameter for do>60 /xm and eventually returns to one. 
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Fig. 5 Velocity scale ratio and time scale ratio 

The two scale ratios, v2
w/v2

0 and Tlt/T33, determine the 
diffusivity ratio, according to Eq. (23). For small particle size, 
Fig. 5 shows that the time scale ratio governs the diffusivity 
ratio. Both the velocity scale ratio and the time scale ratio can 
affect the diffusivity ratio for intermediate particle size. As 
the particle size becomes large the reduction of the horizontal 
dispersion coefficient over the vertical dispersion coefficient 
is totally related to the difference in particle velocity scales in 
the two directions. 

4.3 Discussions The motion of a heavy particle is gov
erned by two time scales, the particle response time T„, which 
increases with the particle size, and the fluid correlation time 
in the neighborhood of the particle. The second scale can be 
direction-dependent. In the vertical direction it is related to 
the longitudinal fluid correlation and is roughly equal to Lj/ 
vd. Lf is the length scale of longitudinal spatial velocity cor
relation of fluid flow. However in the horizontal direction it 
is one ha\fL//vd, since the length scale for the transverse fluid 
correlation is one half Lf for a homogeneous and isotropic 
turbulence (Hinze, 1975). 

Small particles (Ta«Lf/vd) can respond quickly to fluid 
velocity fluctuations. The flow fluctuations have the same in
tensity in both direction because the flow is isotropic and 
homogeneous. Therefore, the particle velocity scale in the hor
izontal direction should be the same as that in the vertical 
direction. But, since the second time scale (fluid velocity time 
scale along the particle path) is direction-dependent, the par
ticle time scale will be direction-dependent as well, as shown 
in Fig. 5. In summary, when particle size is small, the time 
scale ratio determines the diffusivity ratio. 

For very large particles, we have Ta»L//vd. The fluid ve
locity correlation time near the particle is very small compared 
to the particle response time. In this case, the particle motion 
resembles Brownian motion. The time scale of the particle is 
simply ra in all directions, i.e., the time scale ratio is one. Since 
the fluid velocity correlation time seen by the particle, the 
second time scale, in the horizontal direction is one half that 
in the vertical direction, the mean "frequency" of the random 
force acting on the particle due to the neighboring fluid in the 
horizontal direction is about twice the mean "frequency" in 
the vertical direction. Since the inertia is large, the particle can 
not respond to the fluid motion in the horizontal direction as 
to the same extent as in the vertical direction. Therefore, the 
particle velocity scale in the vertical direction is larger than 
that in the horizontal direction. More precisely, for very large 
particles , / „ i 

- t /_ ,,2_..2_tL M L c m 
2VdTa VdTa V3Q V 2 

v2
i0 = uo: 

scales gives StXy~L//(u0TmE). For the particular flow used 
in this simulation, u0 = 11.2 cm/s, TmE = 0.225 s, and Lf= 1.75 
cm, therefore, St x y = 0.694. Using Eqs. (24) and (25), we find 
dp = 72 nm. Therefore, iidp<12 /xm, the time scale ratio mainly 
contributes to the diffusivity ratio; if dp>12 /mi, the velocity 
scale ratio determines the diffusivity ratio. This same result 
can be seen in Fig. 5. 

5 Comparisons With Experimental Data 

5.1 The Grid-Generated Turbulence. Detailed experi
mental measurements of heavy particle dispersion in grid tur
bulence were made by Snyder and Lumley (SL 1971) and Wells 
and Stock (WS 1982). Both experiments used a grid with a 
mesh of spacing 2.54 cm. SL aligned their tunnel test section 
vertically; therefore, their measurements of dispersion in the 
plane perpendicular to the mean flow direction represent dis
persion normal to the direction of the external force (horizontal 
dispersion). Their particles were released at*/M=20, and they 
measured dispersion in the region from x/M=6SA to xl 
M= 168 where the flow decay rate is small. Here x is the 
distance from the grid and M is grid spacing. On the other 
hand, WS used a horizontal tunnel as a test section and they 
measured the dispersion of particles in the vertical direction. 
Their data represent particle dispersion in the direction of the 
drift velocity (vertical dispersion). The particles in WS's ex
periment were released at the grid, and they measured disper
sion from x/M= 20 to x/M= 70 where the decay rate is large. 
They used charged particles and applied an electric field to 
control the particle drift velocity. 

Grid-generated turbulence decays as (WS) 

(28) U'2<x(x-Xo) ', 

and the time scale grows as 

^ m E " (*-*<>)> (29) 

This is also shown in Fig. 5. 
It is of interest to find the particle size for which the two 

scales, ra and Lf/vd, are equal. The equality of the two time 

where x is the distance from the grid and x0 is the virtual origin. 
The dispersion coefficient of fluid elements is almost inde
pendent of x since it is roughly proportional to ulx TmE. Be
cause of this mutual balance of the turbulence energy and the 
time scale, the diffusion of fluid elements or small particles 
can be reasonably simulated with a stationary flow of scales 
matching at one point in the tunnel. However, the dispersion 
of heavy particles may be different from that of fluid elements. 
Using a direct numerical simulation, Ueda et al. (1983) found 
that the dispersion coefficient of heavy particles in decaying 
turbulence is not constant but rather decreases with time. The 
purpose of this section is to study the effect of the flow decay 
on the particle dispersion. 

In what follows, the simulation results are compared with 
SL's and WS's data. Only the Case II turbulence is used for 
the following simulations because there is little effect of the 
shape of fluid velocity correlations on the particle dispersion. 

5.2 Simulation Results Without Flow Decay. In this sec
tion the experiments of SL and WS are simulated using only 
one-point information for the flow scales and ignoring the 
flow decay. In simulating the particle dispersion of SL's ex
periment, the velocity scale and the spatial length scale were 
estimated based on Table 2 of SL's paper at x/M= 73: u0 = 13.1 
cm/s, Lf= 3.1 cm. Location x/M=73 is about the center of 
the test section where the mean square dispersion was meas
ured. No information on the integral time scale in the moving 
Eulerian frame, rmE, was available. By matching the mean 
square dispersion curve for hollow glass beads from the sim
ulation to the measured data, we obtained 7 ^ = 410 ms. This 
value of TmE was then used to predict the dispersion and ve
locity correlation for other particles in the experiment. 

Figure 6 shows the simulation results and experimental data 
for the mean square dispersion. The relative uncertainty for 
the mean square dispersion in the simulations was estimated 
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Fig. 6 Experimental and predicted mean square dispersions for the 
experiment of Snyder and Lumley. Flow decay is neglected in the sim
ulation. 
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Fig. 7 Experimental and predicted Lagrangian velocity correlations for 
the experiment of Snyder and Lumley. Flow decay is neglected in the 
simulation. 

to be 4 percent at a 95 percent confidence level. The simulated 
dispersion is in good agreement with the measured data. In 
particular, the slope for the mean square dispersion curve 
which is proportional to the dispersion coefficient is reasonably 
predicted. We note that for the glass and copper particles, the 
simulated dispersion coefficient is 10-20 percent larger. This 
may be partly due to the effect of flow decay, as discussed in 
the next section. The computed Lagrangian velocity correlation 
of the particle is compared to measured data in Fig. 7. The 
predicted shape of the correlations is fair but it is an improve
ment over the results of Ounis and Ahmadi (1989). The im
provement is a result of using Case II turbulence. 

The flow scales used to simulate WS's experiment were: 
Mo = 19.1 cm/s, TmE= 122 ms, and Lf= 1.264 cm. They were 
estimated using the flow details at x/M= 30 and matching the 
mean square dispersion for 5 jxm particles with zero drift. 

The simulated mean square dispersion for 5 JXVO. particles 
with different falling velocities are shown in Fig. 8 along with 
the experimental data. The agreement between the simulated 
curves and the measured data is considered to be good. How
ever, the agreement is not satisfactory for 57 ^m particles (Fig. 
9), particularly when the drift velocity is large. The predicted 
dispersion coefficient for 57 jim particles with 54.4 cm/s drift 
velocity is about 40 percent larger than the dispersion coef
ficient obtained from the mean slope of the measured disper
sion data. 

5.3 Inclusion of Flow Decay. In the last section, the nu
merically generated flow used in the simulation was stationary 
and the flow scales were constant. The flow decay in the stream-
wise direction of a grid-generated turbulence transforms into 
nonstationary of the flow in the moving Eulerian frame. The 
flow decay can be incorporated into the simulation by making 
the flow scales time-dependent. We shall only consider Wells 

0 20 40 60 80 

x / M 
Fig. 8 Experimental and predicted mean square dispersions of 5 pm 
particles for the experiment of Wells and Stock. Flow decay is neglected 
in the simulation. 

x /M 

Fig. 9 Experimental and predicted mean square dispersions of 57 pm 
particles for the experiment of Wells and Stock. Flow decay is neglected 
in the simulation. 

and Stock's (1983) experiment where the flow decay has a 
significant effect on the particle dispersion. 

To include flow decay in the simulation, we need to know 
how the flow velocity scale and the flow time scale change with 
x/M. Using the flow scales at x/M= 30 and Eqs. (28) and (29) 
for WS's flow, we find 

tx V1/2 

«o = 89.6 (—-7.987) cm/s, (30) 

^=1 .391—-7.987 I ms. (31) 

The length scale is given by Lf= TmEu0, i.e., 

( \ 0.5 

~- 7.987 J cm. (32) 

The first point where the measurements of mean square dis
persion were taken was x/M= 20. Before this point, the flow 
was very irregular. For convenience, we start the simulation 
at this location. Then the time in the simulation is related to 
the location in the tunnel by 

(x \ M 
t=\M-20)V' ( 3 3 > 

where the mean flow velocity Uis 655 cm/s and the grid spacing 
Mis 2.54 cm. Substituting (33) into (30)-(31), we obtain the 
flow scales required for the flow simulation, 

160/Vol . 116, MARCH 1994 Transactions of the ASME 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



E 
o 

to" 
yj 

S? 
u. 
o 
>-

30 

20 

5 l 0 

o 
_1 
UJ 

> 

-

• 

-

-

\ v 

1 1 

^ ^ * ^ 

_ _ o — - vd = 23.65cm/s 

i , , i 

30 60 90 

X / M 

Fig. 10 Experimental and predicted RMS fluctuating particle velocities 
of 5 jim particles for the experiment of Wells and Stock. Flow decay is 
included in the simulation. 
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Fig. 11 Experimental and predicted mean square dispersions of 5 f.m 
particles for the experiment of Weils and Stock. Flow decay is included 
in the simulation. 

Mo(0 = 23.1(? + 46.6)"1/2 cm/s, 
rmE(0 = 0.358(̂  + 46.6) ms, 

(34) 

(35) 

Lf(t) = 0.0635(7 + 46.6)03 cm, (36) 
with t in ms. The flow was again simulated by Fourier modes 
as described in Section 2, using the modifications to the time-
dependent scales given above. 

The initial conditions for the particle were assumed to match 
the data at the first location, i.e., the initial location and the 
initial velocity were taken randomly with normal distributions 
of variances equal to the measured mean square dispersion 
and particle rms fluctuation velocity, respectively, at x/M= 20. 
The simulation results for t > 0 can then be compared to the 
measured mean square dispersion and rms velocity beyond x/ 
M=20. 3000 realizations of particle trajectories were used for 
the following results. 

5.4 Simulation Results With Flow Decay. Figure 10 com
pares the predicted particle rms velocities with the measured 
data for 5 tim particles. The relative uncertainty for the sim
ulated value of rms velocity is 3 percent at a 95 percent con
fidence level. For all three drift velocities, a good agreement 
is observed. As a result of the flow decay, the particles rms 
velocity decreases with the downstream location. The increase 
in the particle drift velocity tends to slightly reduce the particle 
rms velocity. The predicted mean square dispersions for 5 tim 
particles are shown in Fig. 11. They are in good agreement 
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Fig. 12 Experimental and predicted RMS fluctuating particle velocities 
of 57 (tin particles for the experiment of Wells and Stock. Flow decay 
is included in the simulation. 

with the measured data. In addition, a small downward cur
vature for the largest drift case can be seen, indicating the 
local dispersion coefficient slowly decreases with distance down 
the tunnel. 

The predicted particle rms velocities for 57 /xm particles are 
shown in Fig. 12. The predicted particle rms fluctuation ve
locities are very close to the measured data. The dependence 
of the particle rms velocity on the drift velocity is clearly shown 
by the simulation. The particle velocity scale decreases with 
the drift, even though the inertia is kept the same. This decrease 
is caused by the fluid velocity correlation time in the neigh
borhood of the particle decreasing with the drift due to the 
effect of crossing trajectories, i.e., the "frequency" of the 
driving force is increased by the drift. In Fig. 12 we find a 
maximum of 25 percent difference in the rms fluctuation ve
locities between the largest drift particle and the zero-drift 
particle. Comparing Fig. 12 and Fig. 10, we see the rms velocity 
of 57 fim particles of zero drifts is about 25 percent less than 
that of 5 iim particles of zero drift. The 5 /xm glass beads with 
zero drift follow closely the motion of fluid elements. There
fore, the reduction of the rms velocity for 57 /xm particles with 
largest drift over that of fluid elements is half due to the particle 
inertia and half due to the particle drift. The effect of the drift 
on the particle velocity scale is substantially enhanced in this 
experimental work because of the artificial increase of the drift 
by an electric field. 

The effect of flow decay on particle dispersion can be seen 
more obviously when the mean square dispersions of 57 /xm 
particles are considered. Figure 13 shows the predicted curves 
and the measured data. For the largest drift case, the predicted 
curve of the mean square dispersion has an obvious downward 
curvature, i.e., the slope decreases with the downstream lo
cation. This indicates that particle dispersion coefficient de
creases with time, as a result of the flow decay. WS (1983) 
simply calculated the dispersion coefficient based on the av
eraged slope of the measured dispersion data. The measure
ment of local dispersion coefficient is required in this case. 
The method used by Arnason and Stock (1984) might be used 
to make these measurements. 

5.5 Explanation and Discussions. In general, particle dis
persion coefficient in a given flow is controlled by the Stokes 
number (St) and the drift parameter (7). St is a measure of 
the inertia and is defined as ra/TmE. In grid-generated tur
bulence, St is related to x/M by 

St = ̂  (x/M- 7.987)" (37) 

The effective particle inertia is reduced because of the increase 
of the flow time scale. For 57 /xm particles (T„ = 24.4 ms), St 

Journal of Fluids Engineering MARCH 1994, Vol. 116/161 

Downloaded 02 Jun 2010 to 171.66.16.108. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



o 
C/5 

a: 
UJ 
Q. 
w 

UJ 
en 
< 
O 
CO 

< 
2 0 

vd = 25.8 cm/s 
v d = 54.5 cm/s 

_J_ 
20 4 0 

x / M 

60 8 0 

Fig. 13 Experimental and predicted mean square dispersions of 57 t>.m 
particles for the experiment of Wells and Stock. Flow decay is included 
in the simulation. 

3 0 

CO 
UJ 

rr 

2 
u. o 
>-
o 
o 
UJ 

> 

2 0 

10 

o measured data 
-——»simulation 

equation (40) 
equation (30) 

°'M*>--£u.-mAUA!i. 

J 1 i_ 
30 60 

X / M 
90 

Fig. 14 The decay of the rms velocity for 57 ;im particle of a drift velocity 
I'd = 54.5 cm/s, as compared to the asymptotic relation, Eq. (40), and the 
fluid rms velocity decay, Eq. (30) 

is 1.46 at x/M=20 but reduces to 0.28 at x/M =10. On the 
other hand, the drift parameter defined as vd/u0 increases with 
the downstream location. Using Eq. (30), we have 

y = ~(x/M-7.981)° (38) 

For the 57 fim particles with ud = 54.5 cm/s, 7 is 2.1 at x/M 
= 20 and increases to 4.79 at x/M =10. The drift parameter 
is much larger than the inertia parameter and the difference 
between 7 and St grows quickly with x/M. As a result, particle 
dispersion is governed by the crossing trajectory effect and the 
local particle dispersion coefficient decreases with x/M, as 
shown by Fig. 13. 

In the limit of large drift, the vertical particle dispersion 
coefficient is approximated by ulLf/vd (Yudine, 1959). Using 
Eqs. (30) and (32), we have 

-0.5 

-7.987) . (39) e?3c x_ 
M~ 

This approximation indicates that the local particle dispersion 
coefficient for particles of large drift decreases with distance 
at a -0.5 power in grid turbulence. Using Eqs. (27), (30), and 
(32), the vertical velocity scale for the 57 /xm particles with a 
54.5 cm/s drift is approximately equal to 

( \ _0-25 

M~1M1) ' ( 4 0 ) 

which implies that the particle velocity scale decreases with 
distance from the virtual origin by a power of -0.25. This 
power is one half the power for the. decay of fluid velocity 
scale (see Eq. (30)). Figure 14 compares the simulated particle 
rms velocity and the measured data to Eq. (30) and Eq. (40). 
Both the simulation and the measurements show better agree
ment with Eq. (40) for x/M> 50. This suggests that the particle 
velocity scale has a slower decay rate than the fluid velocity 
scale, although the magnitude of the former is less due to 
particle inertia. 

6 Summary and Conclusions 
The aim of this study was to understand heavy particle 

dispersion by turbulence through a numerical simulation of 
particle motion in random velocity field generated by Fourier 
modes. We first extended the method for generating the flow 
to allow exponential fluid velocity correlations. Detailed nu
merical simulations were performed to study: 1) the anisotropic 
ratios of particle dispersion coefficient and scales; 2) the par
ticle dispersion statistics in decaying grid-generated turbu
lences. Comparisons with the previous experimental data were 
made. 

We found the time scale ratio decreases with particle size 
when the particle response time is less than the fluid velocity 
time scale in the neighborhood of the particle. It increases with 
particle size and returns to one when the particle size is large. 
The particle velocity scale ratio decreases monotonically with 
size and asymptotically reaches a value of 1/V2. Therefore, 
for small particles, the particle time scale ratio determines the 
diffusivity ratio; but for large particles, the difference between 
the horizontal dispersion coefficient and the vertical dispersion 
coefficient is related to the difference between the particle 
velocity scale in the two directions. This result is embedded in 
the analysis of Reeks (1977) and partially shown in the sim
ulation of Ferguson (1986). We expect the same scale-ratio 
behavior might be observed experimentally in isotropic wind 
tunnel flows. 

Comparison of the simulation with the experimental meas
urements gives the following conclusions: 1) the simulation 
without flow decay can predict reasonable well the dispersion 
of heavy particles in a flow with slow decay (such as Snyder 
and Lumley, 1971); 2) for particle dispersion in faster decaying 
turbulence (such as Wells and Stock, 1983), the flow decay 
must be included in the simulation to predict the measured 
dispersion data; 3) the particle drift can reduce the particle 
rms velocity; 4) in a decaying flow, the local particle dispersion 
coefficient decreases with downstream location and the particle 
rms velocity decays slower than the fluid rms velocity. 

The simulation indicates that the shape of fluid velocity 
correlations affects the shape of Lagrangian velocity corre
lation of the particle, but has little effect on the mean square 
dispersions, particle time scale and velocity scale. 

This work was supported in part by funds of Summer Grad
uate Research Assistantship provided by Washington State 
University. The simulations were done on the University Com
puter Center's IBM 3090/300. 
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A P P E N D I X 

Scale Estimation Based on the Flow of Ferguson (1986) 
We report here how the parameters, u0, TmE, and Lf, were 

obtained from the information given in Ferguson (1986). They 
were estimated based on the flow of a mean velocity 4.5 m/s 
in Ferguson's experiment at x/M=60. The rms fluctuation 
velocity, u0, was calculated from Eq. (4.7) of his dissertation, 
namely, 

Wo=11.2 cm/s. (A.l) 
The integral time scale, TmE, was directly taken from Table 
4.4 of his work, 

TmE = 0.225 s. (A.2) 
TmE was obtained based on the approximated relation, TmE 
= TfE U/u0, where U is the mean flow velocity and 7>E is the 
Eulerian integral time measured at a fixed point x/M=60. 

Since no direct information on the spatial length scale Lf 
was reported, we estimated it by examining Ferguson's data 
on thermal wake experiment. He found the dispersion coef
ficient of a thermal wake was about 15.5 cmVs with a different 
mean flow velocity of 6.7 m/s. In this flow, the velocity scale 
at x/M=60 was 16.8 cm/s (Eq. (4.8) of his dissertation) and 
7mE = 0.182 s . Then the Lagrangian scale TL= 15.5/(16.8)2 

= 0.055 s. It follows that 7V7:mE = 0.30. According to Wang 
and Stock (1988), we have 2k0TmEu0 = 4.2 (Case I turbulence). 
This gives an estimated value for the wave number, k0 = 4.2/ 
(2x0.182xl6.08) = 0.718 cm"1. The spatial length scale as
sociated with this k0 is 

Lf= 1.2533/Ar0 = 1.75 cm. (A.3) 
We assumed the length scale of the flow field with a mean 
velocity of 4.5 m/s at the same location was the same. This is 
a reasonable assumption since both flows were generated with 
the same grid (thus the same initial length scale) and in the 
same tunnel. 
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Flow Through Porous Media of 
Packed Spheres Saturated With 
Water 
The existing literature on the flow of fluids through porous packed beds gives very 
limited quantitative information on the criteria employed in marking the applicability 
of the different flow regimes. It is the objective of this paper to provide experimental 
evidence for determining the demarcation criteria during the flow of water through 
a bed of randomly packed spherical beads. Two different sizes of glass beads, 3 
mm and 6 mm, were employed as the porous matrix through which water flowed 
at rates varying from 5.07xl0~6 m'/s to 4920x!0~6 m3/s. Our dimensionless 
pressure drop data showed less variation when the characteristic length of the porous 
medium was taken to be proportional to the square root of the permeability over 
the porosity and not the bead diameter. Curves of properly nondimensionalized 
pressure drop (P'R/pv) plotted against the actual flow Reynolds number based on 
the porous medium permeability (ReK) provided the following information. It was 
found that Darcy's law has very limited applicability and is valid for a small range 
of Reynolds numbers (0.06<ReK<0.12). This leads to a pre-Darcy flow that is 
valid for a much broader range of Reynolds numbers than expected (ReK<0.06). 
Alternatively, the range of validity of the post-Darcy laminar Forchheimer flow is 
also found to be of much more limited applicability (0.34 < ReK <2.30) than previous 
studies (Fand et al., 1987) have indicated (0.57<ReKFandeiai.<9.00). Transition 
to turbulence takes place earlier than expected and turbulent flow prevails from 
then on (Re/c>3.40). The dimensionless pressure drop in both the Forchheimer and 
turbulent flow regimes can be modeled by an appropriately nondimensionalized 
Ergun's equation (Carman, 1937), i.e., a first-order inertia term correction is suf
ficient in both flow regimes. However, the magnitude of the correction coefficients 
in the Forchheimer regime differs significantly from that in the turbulent flow regime 
(AF=1.00, BF=0.70, AT=1.90, BT=0.22). Again, this differs from previous find
ings (Fandetal, 1987). The effect of the angle of inclination of the porous medium 
with respect to the horizontal on the transition mechanisms was also experimentally 
investigated. No changes other than the correction in the pressure drop due to the 
static liquid column height were observed. 

1 Introduction 
A large number of papers in the literature has been written 

on the subject of theoretical modeling and experimental ver
ification of flow through porous media. As a result, the ex
perimentally verified Darcy's law constituted a goal in itself 
for theorists to interpret. One such paper, written recently by 
Fand et al. (1987), concentrates on the resistance to the flow 
of fluids through simple and complex porous media whose 
matrices are composed of randomly packed spheres. According 
to this paper, the four different regimes of flow through porous 
media were identified as pre-Darcy, Darcy, Forchheimer, and 
turbulent. Although these flow regimes had been identified 

Contributed by the Fluids Engineering Division for publication in the JOURNAL 
OF FLUIDS ENGINEERING. Manuscript received by the Fluids Engineering Division 
July 20, 1992; revised manuscript received by the Fluids Engineering Division 
February 23, 1993. Associate Technical Editor: J. A. C. Humphrey. 

before, the transition criteria had not been explicitly verified. 
In Fand et al. (1987), the demarcation parameter for the dif
ferent flow regimes is considered to be the particle Reynolds 
number Re=vdp/ix, where v is the superficial flow velocity 
defined as the interstitial or actual fluid flow velocity s/ times 
the porosity 0, d is the characteristic diameter of the particles 
that constitute the porous matrix, and p and y. are the fluid 
density and dynamic viscosity, respectively. In this study, pre-
Darcy flow occurred for Re<10~5, Darcy flow for 
10"5<Re<2.3, Forchheimer flow for 5<Re<80, and tur
bulent flow for Re > 120. Quantitatively our experimental re
sults are different, although they agree qualitatively with these 
findings. 

In the middle 1800's, Henry Darcy observed that under 
certain conditions the volume rate of flow of water through a 
pipe packed with sand was proportional to the negative of the 
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pressure gradient. This relationship, known as Darcy's law, 
after being modified to include the fluid viscosity, can be stated 
as follows: 

dp 
dx~ "K' (1) 

where A" is a constant of proportionality called the permea
bility, and dp/dx represents the pressure gradient in the di
rection of flow. A large amount of effort has been expended 
on determining K for various porous media. The following 
semiempirical expression has been found to accurately rep
resent many experimental data. It is 

K= </y 
sj«(l - 4>)2

 36K(1-</>)2 (2a,b) 

where sv is the surface area per unit volume of the particles, 
and K is an experimentally determined constant known as the 
Kozeny-Carman constant and is a measure of the tortuosity 
of the fluid path through the pores (Carman, 1937, and Wyllie 
and Gregory, 1955). When the porous media consist of spher
ical particles sv = 6/d and Eq. (2b) results. 

Darcy flow is an expression of the dominance of viscous 
forces applied by the solid porous matrix on the interstitial 
fluid and is of limited applicability. Post-Darcy flow is effected 
by inertia forces and turbulence. Forchheimer (1901) is gen
erally credited as first suggesting a nonlinear relationship be
tween the pressure gradient and the fluid velocity. In 1952, 
Ergun (1952) examined this phenomenon for gas flow through 
crushed porous solids based on its dependence upon the flow 
rate and properties of the fluid, the fractional void volume or 
porosity, and orientation, size, and shape of the porous matrix. 
Generalizing Forchheimer's equation 

dp , 2 
-~- = av + bv , 
dx 

(3) 

where a and b are empirical constants, Ergun (1952) obtained 
the following equation: 

dp 
dx' 

( i - * r l*v , D P - 4 0 f>v 

(4) 
tf dL~ <t>5 d' 

where A and B are dimensionless constants. The degree to 
which the above equation may be applied to various porous 
media is dependent on the constants A and B. Ergun (1952) 

concluded that a large quantity of experimental data could be 
represented by A = 150 and B = 1.75. Subsequent experimental 
data have shown that these values are not definitive. For media 
consisting of smooth particles, Macdonald et al. (1979) rec
ommended that for engineering applications ,4 = 180 and 
B= 1.8 should be used. In other words, their results indicated 
that for smooth spherical particles, such as, for example, most 
glass beads, for which the Kozeny-Carman constant K is related 
to A by y4 = 36« exactly, K is equal to 5. Other investigators 
have disputed trie functional dependence of the pressure drop 
on the porosity of the medium. Rumpf and Gupte (1971) rec
ommended the following expression: 

dx 
5.5 W , D ( ! -< /> ) PV 

T + B 
^ 

(5) 

2 Dimensionless Expressions 
If one is to determine the flow demarcation criteria that 

determine transition from pre-Darcy to Darcy, Forchheimer, 
and turbulent flows, one has to identify the appropriate di
mensionless parameters that would affect the magnitude of an 
appropriately nondimensionalized pressure drop. 

Ergun's expression for resistance to flow through packed 
columns (Eq. (4)) can be recast in dimensionless form through 
rearrangement of terms as follows: 

dx nv 
d-0) 2 , „ ( ! -*) 

4>3 + B-
4>J Re, 

or 
dpd2 d2 - ( 1 - 0 ) 

= r £> 5—' 
dx iiv K <j> 

Re. 

(6a) 

(6b) 

Alternatively, Ergun's equation can also be nondimensional
ized using the square root of the permeability as a measure of 
the characteristic dimension of the porous medium. Then, 

dpJ^ B pv^K B 
'dxnv~ +ylA<j,y2 /* " +^lA<j,vl C* 

(la) 

or 

Nomenclature 

.+/ = 

a = first Forchheimer constant 
A = first Ergun constant 
A = first constant in Eq. (17) 
b = second Forchheimer con

stant 
B = second Ergun constant 
B = second constant in Eq. (17) 
B = post-Darcy second-order 

tensorial coupling coeffi
cient Eq. (15) 

C = pre-Darcy second-order ten
sorial coupling coefficient 
Eq. (15) 

d = diameter of sphere 
g = gravitational acceleration 

vector 
I = second-order unit tensor 

K = permeability of isotropic, 
homogeneous porous me
dium 

K = permeability tensor 

Re = 

Re* = 

ReK = 

tf = 

interaction body force ex
erted by fluid phase on solid 
phase 
pressure 
- dp/dx for horizontal 
flow; -d(p + pgz)/dx for 
inclined flow 
Darcian Reynolds number 
based on particle diameter 
= pvd/i>. 
Darcian Reynolds number 
based on porous medium 
permeability =pv^[K/]x 
actual flow Reynolds num
ber based on pore permea
bility and interstitial fluid 
velocity = px/\lK/$/\i, 
surface area per unit volume 
of particles making up po
rous matrix 
time 
fluid stress tensor 

v = 

nJ v-> — 

X = 

P 
0 

superficial flow velocity 
= <t>t/ 
interstitial flow velocity 
magnitude and vector 
solid porous matrix velocity 
vector 
coordinate in direction of 
flow 
coordinate opposite to direc
tion of gravity 
Kozeny-Carman constant 
dynamic viscosity of fluid 
fluid density 
porosity 

Superscripts 
/ = fluid phase property 
s = solid phase property 

Subscripts 
F = Forchheimer flow 
T = turbulent flow 
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Fig. 1 Flow regimes for fluid flow through porous media 

dpK_ 
dx tiv 

B 

y/A<k 
1 + ^ R e , . (76) 

As observed from the above equations, the relevant non-
dimensional group that governs the resistance to flow of fluids 
through packed columns of porous aggregates is either the 
Darcian Reynolds number based on particle diameter, Re, or 
the Darcian Reynolds number based on the square root of the 
permeability of the medium, Re*-, or the actual flow Reynolds 
number, Re#, based on the interstitial fluid velocity t/=v/4> 
and a characteristic length equal to the square root of the 
permeability over the porosity. These authors prefer the latter 
formulation to the first two because of the weaker dependence 
of the equation on the porosity of the medium <j> which is an 
experimental variable. As then indicated by the above equa
tions, the dimensionless pressure drop as a function of Reyn
olds number, for the different flow regimes, can be depicted 
by the plot of Fig. 1. Accordingly, both Forchheimer and 
turbulent flows should have the same functional dependence 
on the Reynolds number but the slope of the curve should 
differ. Equations (6) and (7) above can then be viewed as the 
constitutive relations or laws that describe the resistance to 
flow through a bed of porous aggregates. It is the intention 
of this investigation to show the limited validity of Darcy's 
law and to point out the pronounced differences between 
Forchheimer and turbulent flows. 

3 Interpretation of the Constitutive Expressions 
We next turn to interpreting the constitutive expressions 

given by Eqs. (6) or (7) by specializing the momentum equation, 
obtained from a continuum point of view of the fluid-solid 
phase mixture, to the physical system of interest. 

The equation of conservation of linear momentum of the 
fluid phase in the mixture of fluid and solid porous matrix is 
given by the expression previously derived by Kececioglu and 
Rubinsky (1989). Accordingly, 

.+/., - (<frovO + V • (4>pvV) = V(4>f) + m+J + <j>pg, 
at 

(8) 

where tf is the stress tensor in the fluid phase, m + / is the 
interaction body force exerted on the fluid phase by the solid 
phase, and g is the gravitational acceleration vector. 

To completely specify the momentum equation for the in
terstitial fluid velocity v^ one has to specify the constitutive 
forms of the fluid phase stress tensor tf and the momentum 
interaction m + / between the fluid phase and the rest of the 

porous medium mixtures. One first assumes that the fluid phase 
stress is adequately represented by an isotropic fluid pressure 
p so that 

(9) tf= -pi, 

where I is the second-order unit tensor. A more comprehensive 
constitutive representation of the fluid stress t^ would have 
allowed for a nonisotropic viscous contribution that would 
have incorporated a fluid-velocity gradient dependence. How
ever, as demonstrated by the experiments of Taylor (1971) and 
Beavers and Joseph (1967), the effects of fluid-velocity gra
dients decay rapidly within a few pore diameters, the length 
scale of the continuum approximation of the pore structure, 
and, therefore, they can be neglected in the constitutive relation 
for the fluid stress tensor. Instead, the viscous drag between 
the fluid phase and the solid phase should be taken into account 
through the body force type momentum interaction force vec
tor m + / . m + / can then be taken as the sum of an equilibrium 
component given by the fluid pressure exerted on the increase 
in void area in the flow direction per unit bulk volume and a 
nonequilibrium component due to viscous drag of the fluid 
on the solid matrix and an added mass inertia term due to the 
acceleration of the fluid as it moves around the solid particles 
in the porous matrix. Then, 

m+f=pV<t>- K "WV ./_ v O - p « / > V - v s ) l v ' - v J I B (10) 

In the above equation, B is a second-order tensorial coupling 
coefficient similar to the second-order inverse permeability 
tensor K_1 . If we substitute Eqs. (9) and (10) into Eq. (8), and 
assuming steady flow of a constant density fluid, i.e., d/dt = 0, 
V 'V^=0, and a fully developed flow, i.e., (v^-"7)^=0, then, 
we obtain, 

V p - p g = -K~V</>(v /-vs)-p<^>2(v /-vs)lv /-vsIB. (11) 

We then recognize Eq. (11) above to be the modified form of 
the familiar Ergun's equation for high Reynolds number fluid 
seepage through a deforming porous medium. If we neglect 
the inertia terms associated with the coupling coefficient B we 
recover the vectorial form of Darcy's law 

r K 
4>(yi-^)= [Vp-pg). (12) 

If we assume that the solid phase is at rest and does not deform, 
the momentum equation for the solid phase is replaced by the 
trivial expression Vs = 0, and, furthermore, if the porous me
dium is isotropic and homogeneous, then the permeability 
tensor is replaced by a constant times the second-order unity 
tensor and we recover Eq. (1) from Eq. (12). Similarly, if we 
include the inertia terms, and consider a nondeforming solid 
porous matrix which is isotropic and homogeneous, we recover 
Ergun's equation provided 

B = 
*V Bl' 

and 

K A\. 

(13) 

(14) 

The magnitudes of the constants A and B above should vary 
' depending on whether the inertia dominated flow regime is 
Forchheimer or turbulent. As the above equations indicate, 
the dimensionless pressure drop is independent of Reynolds 
number in the Darcy flow regime, and proportional to Reyn
olds number in the Forchheimer or nonlinear laminar flow 
and turbulent flow regimes when the inertia terms become 
important. In the pre-Darcy flow regime, as suggested by our 
experimental results, the pressure drop seems to be inversely 
proportional to the Reynolds number. This, then, implies a 
momentum interaction body force term of the form: 
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m+/=/?Vc/>-

-p03(v /-v5)lv /-v sIB- fy (yS-v) 
C. (15) 

p Iv'-v5! 
In the equation above, the second term on the right-hand side 
leads to Darcy's law, the third term leads to post-Darcy inertia 
dominated flows, and the fourth term is descriptive of the pre-
Darcy flow regime. 

4 Experimental Apparatus and Procedure 
A schematic diagram of the experimental apparatus is given 

in Fig. 2. The primary portion of the apparatus consisted of 
a clear Plexiglas cylindrical tube 92 cm long whose inside di
ameter is 5.715 cm and outside diameter 6.400 cm. The tube 
was filled with either 3 mm or 6 mm uniformly sized randomly 
packed glass beads; they served as the solid porous matrix 
through which water flowed. The glass beads were held in 
place by means of two circular pieces of wire mesh located at 
the two ends of the tube. Water was either pumped with a 
variable speed drive or gravity fed through the packed beads 
via a loop instrumented with flowmeters to measure the flow 
rates. During the experiments the flow rate varied from 
5.07xl0~6 m3/s to 4920x 10"6 mVs. Gravity feed from a 
constant head tank was used to create low flow rates (less than 
300xl0~6 mVs) and the variable speed pump was used for 
higher flow rates. The thermal and fluid properties of the 
flowing water were determined at the temperature measured 
by two thermocouples placed at each end of the tube. 

The pressure drop was measured across two pressure ports 
located 76 cm apart along the tube. Each one of these ports 
was located 8 cm from the left- and right-hand side ends of 
the tube, respectively. This ensured that the pressure meas
urements were made across a portion of the tube where the 
flow had been fully developed. For small pressure differences 
(less than 1.37 kPa), the measurements were made with a 
Validyne Differential Pressure Transducer. For large pressure 
differences (from 1.40 kPa to 10.40 kPa), manometers were 
employed. Each time the experiments were initiated at the 
largest flow rates; the objective was to produce a stable packing 
of the beads and to prevent the effects of changing porosity 
on pressure drop as the flow rate was varied. 

The angle of inclination of the main apparatus with respect 
to the horizontal was also varied and was either maintained 
at 0 or at 20 deg. This was done to check the effect of inclination 
on flow transition and to verify Darcy's law when the porous 
medium is inclined. At all times, special caution was taken to 
ensure the flow loop was free of air bubbles. 

5 Experimental Results and Discussion 
Experimental data of pressure drop versus flow rate, ac

quired for two particle diameters (e/=3 mm, and d=6 mm) 
and two angles of inclination (0 and 20 deg) with respect to 
the horizontal, were plotted employing the dimensionless co
ordinates suggested by Eqs. (6) and (7). These were plots of 
- (dp/dx) (dV/xy) versus Re, of - (dp/dx) (KZ/xv) versus 
ReK, and of - (dp/dx) (K/fiv) versus Re^. Plots of - (dp/ 
dx) (d2//j.v) versus Re and of - (dp/dx) (K/fxv) versus Re*-
for the 6 mm particles and 0 deg inclination are shown piece
meal in Figs. 3 to 8. For the data acquired when the packed 
bed was inclined, -dp/dx was replaced by —d(p + pgz)/dx, 
where z is the cartesian spatial coordinate increasing in the 
direction opposite to that of the gravitational acceleration vec
tor, and x is still the spatial coordinate in the direction of flow. 
As discussed earlier, for constant porosity media, such as ours 
were, (i.e., V0 = O), these derivatives are properties of the 
porous medium and are proportional to the resistance to flow 
brought up by the presence of the porous medium. From now 
on either one of these derivatives will be denoted by P'. 

Demodulator 

IBM PS/2 

Fig. 2 Schematic diagram of the experimental apparatus 

The dimensionless plots covered a broad range of Reynolds 
numbers and corresponding flow resistances. The plots of P'd2/ 
fiv versus particle Reynolds numbers Re varied with particle 
size but not with inclination. The range of particle Reynolds 
numbers represented by the experimental data extended from 
Re = 0.1 to Re = 90, for the 3 mm particles, and from Re = 0.2 
to Re = 180 for the 6 mm particles. P'd2/fiv for both particles 
varied from about 100 to 5000 for both inclinations provided 
the gravitational correction was made in the P ' term. The 
variation in the experimental curves with particle diameter, 
however, was eliminated when the third form of nondimen-
sionalization was selected. For an Re^ variation from about 
0.04 to 24.00, P'K/ixv varied from about 0.6 to 7.5 for both 
sets of particles and both inclinations. 

The changes in the slopes in both sets of curves (Figs. 3 to 
5 and 6 to 8) indicated the prevalence of the same four flow 
regimes: a pre-Darcy regime, a Darcy regime over a range of 
Reynolds numbers for which P' d2/\iv is equal to a constant 
given by d2/K provided the particle Reynolds number Re is of 
order one or less (this is the section of the curves from which 
the porous medium permeability K is determined), and two 
linear post-Darcy regions, the first considered to be the For-
chheimer regime, and the second one the turbulent flow regime. 
As shown by the experimental curves, the differences in the 
slopes of the Forchheimer and turbulent flows are pronounced. 

The flow regime demarcation sites varied with particle di
ameter when the particle Reynolds number Re was used as the 
demarcation criterion; by contrast, when the permeability based 
actual flow Reynolds number was used as the demarcation 
criterion, for both particle sizes, each one of the four flow 
regimes was identified by the same corresponding Re*- range. 
Specifically, for the 3 mm beads, Darcy's flow was observed 
for 0.3<Re<0.7, Forchheimer flow for 1.6<Re<10.0, and 
turbulent flow for 13.0<Re<90.0. For the 6 mm beads, Dar
cy's flow was established for 0.6<Re< 1.0, Forchheimer flow 
for 3.0<Re<21.0, and turbulent flow for 25.0<Re< 180.0. 
As already pointed out, the corresponding Re^ ranges for both 
sets of particles were the same; they were: Darcy flow for 
0.06< Re^<0.12, Forchheimer flow for 0.34<ReA:<2.30, and 
turbulent flow for Rejf>3.4. The variation of the apparatus 
inclination had no effect on the flow regime demarcation points. 
These results with uncertainty estimates are summarized in 
Table 1. On this table, we also list the findings of Fand et al. 
(1987) for comparison. It can be seen, that, although the dis
parity between their results and ours is pronounced when the 
particle Reynolds number is used as the flow regime demar
cation criterion, the differences become compressed when we 
recalculate their findings using Re*- instead. Their results in
dicate that Darcy's flow prevails for ReA-<0.26, Forchheimer 
flow for 0.57<ReK<9.00, and turbulent flow for Re*> 13.5. 
Fand et al.'s recalculated experimental results extend the upper 
limit of turbulent flow to 50.0. 
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Fig. 3 Plot of dimensionless pressure drop P'd2lp,v versus Darcian 
Reynolds number Re for Oarcy flow through 6 mm beads. (Uncertainty 
in P'o%" is ±0.03 P'd'lpv and uncertainty in Re is ±0.03 Re at 95 
percent confidence level.) (Apparatus maintained horizontal.) 

0.01 0.06 0.08 0.10 0.12 0.11 0.16 0.18 

Actual Flow Reynolds Number Rex 

Fig. 6 Plot of dimensionless pressure drop P'Klfiv versus actual flow 
Reynolds number Re„ for Darcy flow through 6 mm beads. (Uncertainty 
in P'KlpV is ±0.10 P'Klpv and uncertainty in ReK is ±0.06 ReK at 95 
percent confidence level.) (Apparatus maintained horizontal.) 

0.0 5.0 10.0 15.0 20.0 25.0 

Darcian Reynolds Number Re 

Fig. 4 Plot of dimensionless pressure drop P'd'lpv versus Darcian 
Reynolds number Re for Forchheimer flow through 6 mm beads. (Un
certainty in P'd2lfiv\s ±0.06 P'd%v and uncertainty in Re is ±0.03 Re 
at 95 percent confidence level.) (Apparatus maintained horizontal.) 

Actual Flow Reynolds Number Ren 

Fig. 7 Plot of dimensionless pressure drop P'Klpv versus actual flow 
Reynolds number ReK for Forchheimer flow through 6 mm beads. (Un
certainty in P'K\ji.v is ±0.10 P'Klpiv and uncertainty in Re«is ±0.06 ReK 
at 95 percent confidence level.) (Apparatus maintained horizontal.) 

0.0 50.0 100.0 150.0 200.0 

Darcian Reynolds Number Re 

Fig. 5 Plot of dimensionless pressure drop P'd'lpv versus Darcian 
Reynolds number Re for turbulent flow through 6 mm beads. (Uncertainty 
in P'd%v is ±0.06 P'd'lpv and uncertainty in Re is ±0.03 Re at 95 
percent confidence level.) (Apparatus maintained horizontal.) 

0.0 5.0 10.0 15.0 20.0 25.0 30.0 

Actual Flow Reynolds Number Rex 

Fig. 8 Plot of dimensionless pressure drop P'Klpv versus actual flow 
Reynolds number ReK for turbulent flow through 6 mm beads. (Uncer
tainty in P'KI/ivis ±0.10 P'Klp,vand uncertainty in ReKis ±0.06 Re*at 
95 percent confidence level.) (Apparatus maintained horizontal.) 

When all the data (for both particle sizes and both incli
nations) were plotted together, they suggested three piecewise 
continuous curves for the Darcy and post Darcy variation in 
dimensionless pressure drop with Reynolds number. The three 
least squares straight lines at 95 percent confidence level are: 

P'K 
flV 

-=1, 0.062(±0.015)<ReJf<0.120(±0.020), (16a) 

P'K L=1.00(±0.15) + 0.70(±0.15)Re^, 

0.34(±0.06)<Re/f<2.30(±0.70), (16Z?) 
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Table 1 Flow regime demarcation criteria for flow through porous media 
3 mm beads (this study) 6 mm beads (this study) Fand et al. (1987) 

Darcy flow 

Forchheimer flow 

Turbulent flow 

0.30(±0.02)<Re<0.70(±0.05) 
0.062(± 0.015) <Re/f<0.120(± 0.020) 

1.6(±0.3)<Re<10.0(±0.5) 
0.34(±0.06)<Re*<2.30(±0.70) 

Re>13(±l) 
Re*>3.4(±0.6) 

0.60( ± 0.02) < Re <1.00(± 0.03) 
0.062(±0.015)<ReA-<0.120(±0.020) 

3.0(±0.3)<Re<21(±l) 
0.34( ± 0.06) < Re* < 2.30( ± 0.70) 

Re>25(±l) 
Re*>3.4(±0.6) 

Re<2.3(±0.1) 
Re^<0.26(±0.01) 

5.0(±0.5)<Re<80(±5) 
0.57(± 0.06) <ReK<9.00(± 0.60) 

Re>120 
ReK>l3.5 

Table 2 Correlations for dimensionless pressure drop versus Reynolds number for flow through porous 
media 

Forchheimer flow Turbulent flow 

This study 

Fand et al. (1987) 

Macdonald et al. (1979) 

Ergun et al. (1952) 

P'K 
1.00(±0.15) + 0.70(±0.15)ReK; 

0.34(±0.06)<Re/r<2.30(±0.70) 

P'K 

P'K 

jlV 
= 0.93 + 0.14ReA; 

0.57(±0.06)<ReA<9.00(±0.60) 

P'K 

1.90(±0.10) + 0.22(±0.04)Re*; 

ReK>3.40(±0.60) 

P'K 
= 1.14 + 0.12Re*-; 
ReK>13.5 

1.00 + 0.19ReK; 

0.003 <ReA< 32.7 

P'K 
jlV 

= 0.83 + 0.19ReA; 

0.08 <ReA-< 196 

P'K 

fXV 

L=1.90(±0.10) + 0.22(±0.04)Rejr( 

Re*>3.40(±0.60). (16c) 

In other words, both post-Darcy flow regimes, i.e., laminar 
Forchheimer and turbulent, can be adequately modeled with 
only a first order inertia term correction of the form 

P'K 
-A+BReK. (17) 

These results are summarized in Table 2. In this table the 
recalculated correlations of Fand et al. (1987), Macdonald et 
al. (1979), and Ergun (1952) are also cited for comparison. To 
recast Ergun's and Macdonald's correlations in the required 
dimensionless form of Eq. (17), an average porosity of 0.4 was 
assumed for all the represented data. The information in Table 
2 indicates that all correlations (represented now in terms of 
the new dimensionless groups P'K/pv and ReK) are of the 
same order of magnitude. By contrast to the piecewise con
tinuous representations of the results of this investigation and 
that of Fand et al., both works of Macdonald et al. and Ergun 
provide a unified correlation for all their data that span Darcy, 
Forchheimer and turbulent flow regimes. Ergun's data are the 
most comprehensive and extend the upper limit of the turbulent 
flow regime to Rex= 196. The primary difference between our 
results and other data in the literature lies in that our data 
suggest more pronounced differences in the coefficients be
tween the Forchheimer flow regime and the turbulent flow 
regime. 

6 Conclusions 

The existing literature on the flow of fluids through porous 
packed beds provides very limited quantitative information on 
the criteria employed in marking the applicability of the dif
ferent flow regimes. In this paper we provided experimental 
evidence for determining the flow regime demarcation criteria 
during the flow of water through a bed of randomly packed 
spherical beads. Two different sizes of glass beads, 3 mm and 
6 mm, were employed as the porous matrix through which 
water flowed at rates varying from 5.07 x 10~6 m3/s to 

4920 x 10"6 m3/s. Dimensionless pressure drop data as a func
tion of Reynolds number revealed the following: 

1 Our dimensionless pressure drop data showed less var
iation when the characteristic length of the porous medium 
was taken to be proportional to the square root of the perme
ability over the porosity and not the bead diameter. Accord
ingly, curves of properly nondimensionalized pressure drop 
(P'K/pv) plotted against the actual flow Reynolds number 
based on the porous medium permeability (Re*-) were viewed 
as the more physically meaningful way of data presentation. 

2 The changes in the slope of the experimental curves in
dicated four flow regimes: a considerable pre-Darcy flow re
gime, rather limited Darcy flow and Forchheimer flow regimes, 
and a turbulent flow regime. It was found that Darcy's Law 
has very limited applicability and is valid for a small range of 
Reynolds numbers (0.06<ReK<0.12). This leads to a pre-
Darcy flow that is valid for a much broader range of Reynolds 
numbers than expected (Re#<0.06). Alternatively, the range 
of validity of the post-Darcy laminar Forchheimer flow is also 
found to be of limited applicability (0.34 <Rejr< 2.30). Tran
sition to turbulence takes place at Re#= 3.4 and turbulent flow 
prevails from then on (ReAr>3.4). 

3 The dimensionless pressure drop in both the Forchheimer 
and turbulent flow regimes can be modeled by an appropriately 
nondimensionalized Ergun's equation (1952), i.e., a first-order 
inertia term correction is sufficient in both flow regimes. How
ever, the magnitude of the correction coefficients in the For
chheimer regime differs significantly from that in the turbulent 
flow regime (AF= 1.00, BF=0J0; AT= 1.90, 5T-=0 .22) . 

4 The effect of the angle of inclination of the porous me
dium with respect to the horizontal on the transition mecha
nisms was also experimentally investigated. No changes other 
than the correction in the pressure drop due to the static liquid 
column height were observed. 

5 The experimental data (for both particle sizes and both 
inclinations) were correlated in terms of three piecewise con
tinuous curves for the Darcy and post Darcy variation in di
mensionless pressure drop with Reynolds number given at 95 
percent confidence level by equation 16. Correlations of our 
results and of recalculated results of other investigators are 
summarized in Table 2. 
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Asymptotic Wake Behavior of Swept, 
Blunt Trailing-Edge Airfoils 

G. V. Selby1 and F. H. Miandoab1 

The effect of base sweep and the addition of passive flow-
control devices at constant base sweep angle (30 deg) on the 
asymptotic behavior of turbulent wakes produced by flatplate 
airfoils was experimentally examined. It was determined that 
values of the nondimensional streamwise velocity defect and 
wake thickness parameters for the grooved model with 30 deg 
swept base at fourteen base thicknesses downstream of the 
base at mid-span were closer to asymptotic values from em
pirical plane wake predictions than values for the 0, 30, and 
45 deg swept baseline models and the 30 deg swept model with 
Wishbone vortex generators. The grooves apparently inhibited 
the three-dimensionality of the resulting wake flow. 

Introduction 
Blunt trailing-edge airfoils have a significant structural ad

vantage over sharp trailing-edge airfoils. However, a major 
disadvantage is the increased base drag associated with blunt 
trailing-edge airfoils. Previous studies conducted by the present 
authors have examined the effect of various passive devices 
on the base pressures of blunt trailing-edge airfoils with un-
swept and swept bases (Selby and Miandoab, 1990; Selby et 
al., 1990). 

The effect of base sweep angle and the addition of flow-
control devices (longitudinal V-grooves and "Wishbone" vor
tex generators (Wheeler, 1989)) on the asymptotic behavior of 
turbulent wakes generated by blunt trailing-edge airfoils of 
varying base sweep angle ((3) has been studied. It has been 
previously demonstrated that these modifications decrease the 
base drag of two-dimensional and swept blunt trailing-edge 
airfoils by increasing the base pressure (Selby and Miandoab, 
1990; Selby et al., 1990). For the unswept airfoil, the resulting 
base pressure distribution became more uniform (two-dimen
sional) upon the introduction of three-dimensional longitu
dinal (vortical) structures into the wake (Selby and Miandoab, 
1990). These results suggested that the present three-dimen-
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Fig. 1 Definition of wake parameters 

sional base flows might be similarly affected and thus provided 
the motivation for the present study of three-dimensional wakes 
and wake flow control. That is, the modified 3-D wake flow 
might asymptote toward a plane turbulent wake state closer 
to the base (in terms of the mean streamwise flow), than would 
the unmodified 3-D wake flow. 

Plane turbulent wakes generated by models of different 
shapes are noted to approach a unique self-preserving state 
(Sreenivasan, 1981). A self-preserving state is attained when 
the mean velocity profile normalized by the appropriate ve
locity and length scales is independent of streamwise position. 
A two-dimensional self-preserving turbulent wake in the 
asymptotic limit of vanishing velocity defect (w) is character
ized by constant values of two parameters (Narasimha and 
Prabhu, 1972), 

1/2 

W=[TiL\ I T ) andA = 5(.*0r1/2 Wc 

U0 

where w0 is the maximum velocity defect and 8 is the half-
wake thickness measured from the maximum velocity defect 
to where w= w0/2 in the transverse direction (see Fig. 1). Mo
mentum thickness, d, is defined as 

J-ooVVV £)(-£'* 
Uniqueness of the asymptotic self-preserving state requires that 
the parameters W and A assume universal values W* 
(=1.63±0.02) and A*( = 0.30±0.005), respectively (Sreeni-
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vasan and Narasimha, 1982). Additional parameters, ^ and 
I2, estimated from the normalized wake defect profile and 
defined as 

n +00 / \ 11 

7 ' " L ( J ) * » = 1.2and,=J 
are also pertinent to the analysis (Sreenivasan and Narasimha, 
1982). Integral parameters h and I2 are expected to have con
stant values independent of streamwise position for self-pre
serving profiles. Sreenivasan and Narasimha's (1982) average 
measured values were reported to be /] = 2.06 ±0.01 and 
h= 1.51 ±0.02. An attempt is made herein to characterize 
asymptotic wake behavior in this study in terms of the param
eters discussed. 

Experimental Apparatus 
All tests were conducted in the 91 cmx 122 cm test section 

of the Old Dominion University low-speed closed-circuit wind 
tunnel. Three flat-plate airfoil models with an elliptical leading 
edge, maximum thickness (Ji) of 2.54 cm, span of 38 cm, and 
base sweep angles of 0, 30, and 45 deg were tested. All three 
models had a chord length of 31 cm at midspan. The airfoil 
models were attached to the middle of 76 cm high side walls 
which extended 1.3 m in the freestream direction, beginning 
at the leading edge of the models. In order to eliminate the 
effect on the flow of protuberances located on the test section 
ceiling and to provide uniform flow over the model, horizontal 
plates were attached to the top and bottom end of the side 
walls. These horizontal plates, as well as the airfoil model, 
were installed parallel to the floor of the test section. To attain 
fully developed turbulent flow at the base of the models, flow 
on both the upper and lower surfaces was tripped by a wire 
(diameter = 1.02 mm) located 5 cm downstream of the leading 
edge. A 2 cm thick turbulent boundary layer existed 2.5 cm 
upstream of the base of the wind tunnel models (Re = 2.6 X 106 

at a free-stream speed of 43 m/s, based on distance to base at 
midspan). Only the 30 deg swept-base model was tested with 
Wishbone and V-groove modifications (see Fig. 2). Longitu
dinal V-grooves (7.6 cm long, 100 deg total included angle) 
spaced 2.54 cm apart were used on the upper and lower surfaces 
of the model near the base. The tips of the Wishbone vortex 
generators were placed at the trailing edge of the model with 

similar spanwise spacing. These generators consisted of a single 
row of triangular, ramp-like devices shaped like individual 
downstream-facing arrowheads. All tests were conducted at a 
free-stream speed of 43 m/s. A pitot-static probe was used to 
survey the wake to define mean velocity profiles. For each 
model tested, surveys were conducted at three spanwise po
sitions (25, 50, and 75 percent span or z/s = 0.25, 0.50, and 
0.75) in three streamwise planes. 

Discussion of Results 
Sharma (1987) used normalized graphs of 6, as a function 

of w0, to examine wake velocity profiles for self-preservation 
by comparing them to theoretical curves obtained from the 
definition of momentum thickness and integral parameters 
(solid line, Fig. 3) and from the asymptotic wake relations 
(dashed line, Fig. 3) (Patel and Scheuerer, 1982). Similar data 
for the present study are also shown in Fig. 3. There is close 
agreement between the experimental data and the theoretical 
curves for all cases tested. A survey of the wake generated by 
the 30 deg swept-base model modified by Wishbones placed 
in the vicinity of the trailing edge resulted in measurements 
which noticeably departed from the other experimental data 
at the two upstream measurement stations. The Wishbones 
apparently introduced highly three-dimensional flow into the 
wake near the trailing edge of the model. Lin et al. (1991) have 
shown that in the nominal orientation, these generators shed 
horseshoe vortices. However, the effect of the vortices gen
erated by the Wishbones seemed to rapidly diminish in the 
downstream direction, as evidenced by the fact that the Wish
bone data became in closer agreement with the other experi
mental data at the measurement station farthest downstream 
(x/h =14). 

Figures 4-6 show a comparison between the asymptotic pro
file [w/w0 = exp ( - ?)2ln 2)] and measured wake velocity defect 
profiles at three spanwise positions for x/h = 14. There is good 
agreement between the asymptotic profile and the measured 
profiles. However, observed deviations between the asymptotic 
and measured profiles (especially in Figs. 5 and 6) are partially 
due to increased cross-stream mixing produced by the longi
tudinal vortices introduced into the wake (model with Wish
bones). In addition, near the upstream corner of the base, the 
45 deg swept-base data significantly deviated from the asymp
totic profile due to three-dimensional end effects. However, 
as Figs. 5 and 6 indicate, in this latter case, the asymptotic 
profile is approached at midspan. The data then deviated again 
from the asymptotic profile as the downstream corner of the 
base was approached. However, as Fig. 6 shows, end effects 
are not as pronounced at z/s = 0.75 as at z/s = 0.25. In general, 
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Fig. 2(a) 30 deg swept trailing edge flat plate with V-groove modification 
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the agreement between the asymptotic profile and measured 
data appeared best at midspan, as expected, based on the first 
author's experience with 3-D separated flows associated with 
swept, rearward-facing steps (Selby, 1989). 

Sreenivasan (1981), in his study of plane turbulent wakes, 
observed the convergence of wake parameters A and W to 
asymptotic values A* and W*. Following the approach of 
Sharma (1987), A as a function of Wior the present study for 
surveys conducted at midspan are calculated and plotted in 
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Table 1 Measured wake parameters, I\ and I2 

Model J, Z 
j8 = 0 deg, Baseline 
/3 = 30 deg, Baseline 
/3 = 30 deg, Wishbones 
/3 = 30 deg, Grooves 
0 = 45 deg, Baseline 
Sreenivasan and 

Narasimha (1982) 

2.20±0.09 
2.20±0.10 
2.04±0.03 
2.26 ±0.08 
2.22±0.15 
2.06±0.01 

1.51 ±0.03 
1.50±0.01 
1.57±0.11 
1.50±0.01 
1.53±0.12 
1.51 ±0.02 

Fig. 7 against Sreenivasan's (1981) curve (AW=A*W*) and a 
theoretical curve for two-dimensional asymptotic wakes (Patel 
and Scheuerer, 1982). All data points appear to asymptotically 
approach the point (W*, A*). The wake of the grooved 30 deg 
swept-base model appears to be closer to the asymptotic state 
at the farthest downstream measurement location than the 
other configurations, while the baseline 45 deg swept-base 
model and 30 deg swept-base model with Wishbones are far
thest from the asymptotic self-preserving state at this same 
measurement location (x/h=14). An additional mechanism 
behind the effectiveness of the grooved models might be the 
attenuation of the Karman vortex street in the base flow. Com
menting on the fast approach to the equilibrium state dem
onstrated by the wake of their twin-plate model, Sreenivasan 
and Narasimha (1982) report that "the mean strain field im
mediately behind the twin-plate generator promotes the dis
integration of energetic large eddies, resulting in a simpler 
behavior further downstream." 

Average values of It and 72 for the present models and values 
from Sreenivasan and Narasimha (1982) are presented in Table 
1. 7j and h represent nondimensional wake momentum and 
kinetic energy deficits, respectively. The data compare reson-
ably well, considering that the present measurements were made 
within x/h<20. 

Conclusions 

In general, the turbulent wakes of flat plates with swept 
bases exhibited behavior similar to plane wakes, in terms of 
the identified mean streamwise parameters, even as close to 
the base as x/h=\4. However, as the swept base was ap
proached, three-dimensional wake behavior deviated consid
erably from the behavior of plane wakes, as expected. This 
deviation also increased with sweep angle and with the addition 
of three-dimensional vortical structures to the wakes. How
ever, attached flow in the surface grooves upstream of the 30 
deg swept base apparently inhibited the three-dimensionality 
of the resulting wake flow, resulting in values of the non-
dimensional streamwise velocity defect and wake thickness 
parameters at x/h = 14 that were closer to asymptotic values 
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from empirical plane wake predictions compared to values for 
the baseline 30 deg swept-base model with and without Wish
bone vortex generators. 
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Weak Thermal Vortex Rings 

R. Ganapathy1 

A simple mathematical model is proposed and a similarity 
solution is obtained to study the behavior of very weak thermal 
vortex rings induced by a horizontal line source of thermal 
energy in an unbounded fluid. The temperature distribution 
is assumed to be unaffected by the fluid motion, and the Stokes 
flow approximation is invoked. Streamlines are computed to 
demonstrate the evolution of the flow field. 

1 Introduction 
Determination of the flow field induced by a heat-generating 

body in the fluid surrounding the body is essential to the 
solution of many engineering problems such as the hydrody
namics of weak thermal explosions, cooling of the components 
of electrical and electronic equipment, and the management 
of nuclear waste materials. Providing the rate of heat gener
ation is small, the flow may be modeled as Stokes flow. One 
may then neglect the convective terms in comparison to the 
local acceleration term in the momentum equations, and adopt 
the Boussinesq approximation to express the buoyancy force 
field in terms of the temperature field. 
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Although the importance of buoyancy driven flows due to 
the presence of horizontal line sources has been well established 
in the literature (for instance, Serruk, 1958; Crane, 1959; 
Spalding and Cruddace, 1961; Brodowicz and Kierkus, 1966; 
Forstrom and Sparrow, 1967; Vest and Lawson, 1972; Fuji et 
al., 1973; and Jaluria and Gebhart, 1977), time-dependent 
Stokes flows have remained largely untreated. But such flows 
have the important utility that flow fields due to the presence 
of solid boundaries can be synthesized from these flows using 
the method of images or some well-known reflection tech
niques. It is thus worthwhile to provide the solution to this 
problem and to study the behavior of the ensuing very weak 
thermal vortex rings. 

We assume that the temperature field is unaffected by the 
fluid motion. By a dimensional analysis, it can be shown that 
this assumption does not lead to significant errors when the 
Prandtl number is small, which is a reasonable assumption 
here since the heat-generating rate is assumed to be small so 
that the induced flow is slow. 

2 Problem Statement 
Consider a horizontal line source of thermal energy embed

ded in an unbounded fluid of density p and kinematic viscosity 
v. The fluid is Boussinesq incompressible with the density-
temperature relation 

p=Po[i-/3or-r0)], (i) 
where T is the temperature, j3 the volumetric coefficient of 
thermal expansion, and the subscript 0 denoting a reference 
state. Initially, the temperature is uniform everywhere in the 
system. At time f = 0, the heat source starts liberating heat at 
a rate Q (watts per unit length of a rod). A cylindrical polar 
coordinate system (/•, 4>, z) is chosen with the </> = 0 plane hor
izontal and the z-axis along the line heat source. As the flow 
field is uniform on all planes normal to the z-axis, neither z 
nor the z-component of velocity appears in the analysis. 

Taking advantage of the continuity equation 

V-q = 0 (2) 
where q = (w, v, w) is the fluid velocity, we define a stream 
function ^ such that 

u = rid<H/d<t>, v=-d*/dr. (3) 
We introduce a set of nondimensional quantities 

R = r/d, t^ = at/d\ *„ = */V, Tt=(T-T0)k/Q, (4) 

where d is a reference scale for length, k is the thermal con
ductivity and other symbols have their usual meanings. The 
energy equation in this nondimensional form reads (after drop
ping the asterisk): 

dt + R \d</> dR~dR d<j>) ~ \dR2 + R dR+R2 d<j>2) ' ( } 

where Pr = v/a is the Prandtl number. When the Prandtl num
ber is small (Pr< 1), the second term on the left side of Eq. 
(5) may be neglected in preference to the local derivative term, 
which is indeed in accordance with Stokes flow approximation. 
Thus, eliminating the pressure terms in the momentum equa
tions through cross-differentiation and invoking Stokes flow 
approximation, we obtain for the conservation of momentum 
and energy in the nondimensional form in the limit of small 
Prandtl number (after dropping the asterisk): 

r„2 i ai 
D2 

Pr dr 
T Ra T 

ljr = 

Pr [ 

dT/dt = D2T, (7) 
where 
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from empirical plane wake predictions compared to values for 
the baseline 30 deg swept-base model with and without Wish
bone vortex generators. 
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Weak Thermal Vortex Rings 

R. Ganapathy1 

A simple mathematical model is proposed and a similarity 
solution is obtained to study the behavior of very weak thermal 
vortex rings induced by a horizontal line source of thermal 
energy in an unbounded fluid. The temperature distribution 
is assumed to be unaffected by the fluid motion, and the Stokes 
flow approximation is invoked. Streamlines are computed to 
demonstrate the evolution of the flow field. 

1 Introduction 
Determination of the flow field induced by a heat-generating 

body in the fluid surrounding the body is essential to the 
solution of many engineering problems such as the hydrody
namics of weak thermal explosions, cooling of the components 
of electrical and electronic equipment, and the management 
of nuclear waste materials. Providing the rate of heat gener
ation is small, the flow may be modeled as Stokes flow. One 
may then neglect the convective terms in comparison to the 
local acceleration term in the momentum equations, and adopt 
the Boussinesq approximation to express the buoyancy force 
field in terms of the temperature field. 
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Although the importance of buoyancy driven flows due to 
the presence of horizontal line sources has been well established 
in the literature (for instance, Serruk, 1958; Crane, 1959; 
Spalding and Cruddace, 1961; Brodowicz and Kierkus, 1966; 
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of solid boundaries can be synthesized from these flows using 
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this assumption does not lead to significant errors when the 
Prandtl number is small, which is a reasonable assumption 
here since the heat-generating rate is assumed to be small so 
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2 Problem Statement 
Consider a horizontal line source of thermal energy embed

ded in an unbounded fluid of density p and kinematic viscosity 
v. The fluid is Boussinesq incompressible with the density-
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where T is the temperature, j3 the volumetric coefficient of 
thermal expansion, and the subscript 0 denoting a reference 
state. Initially, the temperature is uniform everywhere in the 
system. At time f = 0, the heat source starts liberating heat at 
a rate Q (watts per unit length of a rod). A cylindrical polar 
coordinate system (/•, 4>, z) is chosen with the </> = 0 plane hor
izontal and the z-axis along the line heat source. As the flow 
field is uniform on all planes normal to the z-axis, neither z 
nor the z-component of velocity appears in the analysis. 

Taking advantage of the continuity equation 

V-q = 0 (2) 
where q = (w, v, w) is the fluid velocity, we define a stream 
function ^ such that 

u = rid<H/d<t>, v=-d*/dr. (3) 
We introduce a set of nondimensional quantities 

R = r/d, t^ = at/d\ *„ = */V, Tt=(T-T0)k/Q, (4) 

where d is a reference scale for length, k is the thermal con
ductivity and other symbols have their usual meanings. The 
energy equation in this nondimensional form reads (after drop
ping the asterisk): 

dt + R \d</> dR~dR d<j>) ~ \dR2 + R dR+R2 d<j>2) ' ( } 

where Pr = v/a is the Prandtl number. When the Prandtl num
ber is small (Pr< 1), the second term on the left side of Eq. 
(5) may be neglected in preference to the local derivative term, 
which is indeed in accordance with Stokes flow approximation. 
Thus, eliminating the pressure terms in the momentum equa
tions through cross-differentiation and invoking Stokes flow 
approximation, we obtain for the conservation of momentum 
and energy in the nondimensional form in the limit of small 
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Ra = (0gd3/apk)Q (thermal Rayleigh number), 

D2 = d2/dR2 + (l/R)d/dR+ (l/R2)d2/dcj)2. (8) 

These equations are solved subject to the initial and boundary 
conditions: 

(7=0, V=Q, T=0att = Q, 

C/-0, K - 0 , T-0asR^<x>, 

V=dU/d<l> = dT/d<l> = 0at(t>=±ir/2, (9) 

where, (U,V) =(d/v) («, v) are the nondimensional form of 
the velocity components. Further, the conservation of heat 
flux requires that 

lim [-2irRdT/dR] = l. (10) 

With the help of (9) and (5) we conclude that 

T=O(\0gR), U=0(R~i\ogR), 

V=0 ( /T1) asR-0. (11) 

3 Results and Discussion 

From Carslaw and Jaeger (1959), the solution of Eq. (7) 
that satisfies the initial and boundary conditions is: 

T=-(4irylEi(-R2/4t), (12) 

where Ei is the exponential integral given by 

Ei(—x)= — \ exp(-u)/udu. (13) 

The function ^ is now found from the solution of Eq. (6) in 
which the variables are separated by setting 

^ 1 9 
Er 

Vxdt 

*=(Ra/Pr) (47i - r ' cos <£/(7?, /), (14) 

where f(R, t) is the function to be determined. 
Substituting (12) and (14) into (6), we obtain after taking 

the Laplace transform, 

/ " + (UR)f - (l/JR
2)/=iT l(7?V^)/V^ ) (15) 

where 

exp(-st)-f(R, t)dt, (16) 

is the Laplace transform of / and the primes denote differ
entiation with respect to R, K\ being the modified Bessel func
tion of the second kind of order 1. The general solution of 
(15) is 

f=al(s)/R + a2(s)R2 + Kl(pR)/p\ (17) 

where ax and a2 are the constants of integration and p = \fs. 
Finally, setting 

* = (Ra/Pr)(4Tr)"1cos0-JF(J?, t), (18) 

we obtain from (14) after taking the Laplace transform 

F" + (WR)F' -(W2+l/R2)F=f, (19) 

where W2 = s/Pr and all other symbols have their usual mean
ing. The complete solution of (19) is 

F=ai(s)-Il(WR)+aA(.s)-Ki(WR) 

+ G(R,x)-f(x)dx, (20) 

where «3 and a4 are the constants of integration and 

G{R,x)=-Ki(WR)-Il(Wx), (x<R) 

= -KdWx)-h(WR). {x>R) (21) 

The boundary conditions ensure that 

al=Wi/[p\W2-p2)], «2 = 0, «3 = 0, 

a4=W/[2p4(W+p)]. (22) 

Fig. 1 Transient natural convection flow around a horizontal line heat 
source. Curves represent [>4(3'2]~1* = const. 

We now obtain from (17) 

7=[-\/R+pKl{pR)}/\p\W2-p2)}. (23) 

Using the table of Laplace transform due to Campbell and 
Foster (1961), we have after inverting (23), 

* = tV2A [ - 1/r/ + (1/TJ + ri) exp ( - r)2) 

+17(2 + -q2)Ei{ - rj2)] cos </>, (24) 

where, 

r/ = R/2\ft and A = (4TT) ~' [Ra/(1 - Pr)]. 

The streamlines [AtV2]~l^ = const as computed from Eq. 
(24) are shown in Fig. 1. The transient flow pattern for small 
values of r; in the region close to the source consists of an 
expanding vortex whose radius increases with time as t"'2, the 
whole process being dominated by viscous and thermal dif
fusion. This is physically meaningful since the rapid release of 
the quantity of heat from the source into the large region of 
fluid at rest sets in motion a small volume of heated fluid and 
as it rises, this buoyant fluid grows in volume through con
duction of heat and viscous diffusion of momentum outwards. 
Since the heated fluid is displaced upwards by the ambient 
fluid from approximately its own level and in turn displaces 
the ambient fluid from its path, the flow has the general pattern 
of a vortex ring but unlike the case of a point heat source 
where we witness ciruclar vortices (see Morton, 1960) here the 
vortices are toroidal in shape. Near the origin the streamlines 
come close together illustrating the fact that the velocity is 
infinite at the source and as t increases, the flow pattern present 
near the source is likely to spread outwards filling the entire 
space. Nevertheless, as the solution for ^ (Eq. (24)) contains 
cos 4>, the symmetry of the streamlines about the <t> = 0 plane 
is preserved at all times. The slight bulging of the streamlines 
near the origin indicates the impulsive effect of the source on 
the fluid particles in its vicinity and is created by the fluid 
particles driven upward under the action of buoyancy. There 
is no accumulation of heat into the vortex ring and the flow 
in and around the vortex rings remains laminar, which is similar 
to the buoyant plumes that rise from steady sources of heat 
or other sources of positive buoyancy. Further, as the heat-
generating rate is small, the vortex ring will be thermally weak 
and the pattern differs only slightly from that of an ordinary 
vortex ring without buoyancy (see Lamb, 1931); in particular, 
there is a larger core to the ring, which is a consequence of 
the inherently stable nature of such a light core under forces 
produced by rotation about its axis. 

In order to exemplify the results, numerical values of the 
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R 
Fig. 2 Radial velocity profiles (f 
(c)Pr = 0.7 

05 1.0 

= 0.1) (a) Pr = 0.025, (to) Pr = 0.25, 

magnitudes of the radial velocity were computed for different 
values of Pr and for different spacial positions at time t = 0.1. 
These results are plotted in Fig. 2 from which it is deducible 
that the magnitudes of the velocity diminish with distance, but 
increase with Prandtl number. This then tacitly implies and 
confirms that our solution is valid for small Prandtl numbers 
only. 

4 Conclusion 
The similarity solution we have obtained for the stream 

function is indeed the Green's function for this class of prob
lems and is valid in the limit of small Prandtl number only 
(Pr< 1). From this solution, solutions to problems where the 
heat-generating rate is a general but known function of space 
and time, in bounded and unbounded domains can be syn
thesized using known techniques. As the flow field is thermally 
weak, the solution is expected to give a reasonably good picture 
of the free convection motion induced by the line heat source 
and in the absence of stability effects, the behavior is unlikely 
to change radically for moderate values of the Prandtl number 
also. In the case of large Pr (> >1), some simplification in 
the analysis may be achieved by treating the velocity field as 
a quasistatic Stokes flow (see for instance, Krenk, 1981). Under 
this circumstance, it would, however, not be justifiable to 
ignore the interaction between velocity and temperature fields. 

It is worth noting that for large t, the fluid velocity is given 
by 

(H, i>)oclogr7(sin</>, cos0). (25) 
Since ri = R/2\fi, the magnitude of this velocity grows without 
bounds in the limit / -co, which is expected for such problems 
of line heat sources and which only mirrors the well-known 
results for conduction problems. Consequently, our solution 
is valid for small and moderate values of / only. Even if we 
consider higher-order corrections to the velocity and temper
ature fields, this peculiarity of unboundedness of the fluid 
velocity will persist whenever f— oo. Since the thermal field is 
very weak and the induced flow is slow, the unboundedness 
or otherwise of the velocity field for large time is not of great 
significance. Since the temperature distribution is not influ
enced by the fluid motion, we have not presented the results 
in terms of a Nusselt number. 

Though explicity not shown, the method adopted in this 
work is analogous to a regular perturbation involving series 
expansions for the dependent variables in terms of Pr. Hence 
the result we have obtained for T represents the zeroth-order 
solution for the thermal field, whereas the solution for ^ [Eq. 
(24)] is the first-order convective correction to the velocity field 
and consequently it represents the solution for conduction 
aided free convective flow. Such is always the case whenever 
a heat-generating body is suddenly embedded in a fluid which 
is otherwise at rest. In fact, the flow may be realized when an 
electric current is passed through a horizontal wire, which is 
submerged in an unbounded medium. 
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